
SOFTWARE ENGINEERING

BCA - 303

SOFTWARE ENGINEERING

BCA - 303

This SIM has been prepared exclusively under the guidance of Punjab Technical

University (PTU) and reviewed by experts and approved by the concerned statutory

Board of Studies (BOS). It conforms to the syllabi and contents as approved by the

BOS of PTU.

Reviewer

Dr. N. Ch. S.N. Iyengar
Senior Professor, School of Computing Sciences,
VIT University, Vellore

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT LTD
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 • Fax: 0120-4078999

Regd. Office: 576, Masjid Road, Jangpura, New Delhi 110 014
• Website: www.vikaspublishing.com • Email: helpline@vikaspublishing.com

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or

hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording

or by any information storage or retrieval system, without prior written permission from the Publisher.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Publisher and its Authors shall in no event be liable for any errors, omissions

or damages arising out of use of this information and specifically disclaim any implied warranties or

merchantability or fitness for any particular use.

Author: Rohit Khurana

Copyright © ITL Education Solutions Ltd., 2006

Reprint 2010

CAREER OPPORTUNITIES

Software engineers who work in applications or systems development
are engaged in analyzing user needs and designing, constructing,
testing, and maintaining computer applications software or systems.
These engineers are also geared to tackle technical problems and
hitches.

Computer software engineers, who develop a finished product ready
to release, are usually a part of the mega team that designs and works
on advanced hardware, software, and systems and that includes
workers from various fields like engineering, marketing, production
and design. They work for companies that need configuration,
implementation, and installation of complete computer systems. These
engineers may also be part of the marketing or sales staff, and serve
as the chief technical resource for these sales officers, staff, as well
as customers. They may even engage in product sales and provide
continued technical support to the buyers and consumers.

PTU DEP SYLLABI-BOOK MAPPING TABLE
BCA - 303 Software Engineering

Section-I
Software: Characteristics, Components Applications, Software Process
Models: Waterfall, Spiral, Prototyping, Fourth Generation Techniques,
Concepts of Project Management, Role of Metrics And Measurement.

Section-II
S/W Project Planning: Objectives, Decomposition Techniques: S/W
Sizing, Problem Based Estimation, Process Based Estimation, Cost
Estimation Models: COCOMO Model, The S/W Equation, System
Analysis: Principles of Structured Analysis, Requirement Analysis, DFD,
Entity Relationship Diagram, Data Dictionary.

Section-III
S/W Design: Objectives, Principles, Concepts, Design Mythologies: Data
Design, Architecture Design, Procedural Design, Object – Oriented
Concepts, Testing Fundamentals: Objectives, Principles, Testability, Test
Cases: White Box & Black Box Testing, Testing Strategies: Verification
& Validation, Unit Test, Integration Testing, Validation Testing, System
Testing.

Unit 1: Software Process
and Process Models

(Pages 3-31)

Unit 2: Software Project
Planning & Cost Estimation

(Pages 33-63);
Unit 3: Systems Analysis (Pages 65-111);

Unit 4: Software Design
(Pages 113-155)

Unit 5: Software Testing
(Pages 157-206)

Syllabi Mapping in Book

CONTENTS

INTRODUCTION 1

UNIT 1: SOFTWARE PROCESS AND PROCESS MODELS 3–31
1.0 Introduction; 1.1 Unit Objectives
1.2 Software; 1.2.1 History of Software Development; 1.2.2 Software Characteristics;

1.2.3 Software Components; 1.2.4 Evolution of Software Engineering;
1.2.5 Evolution of Software Engineering

1.3 Software Engineering: Definition
1.3.1 Software Engineer

1.4 Phases in Software Engineering
1.4.1 Preliminary Investigation; 1.4.2 Case Study: Bridge and Software Development

1.5 Software Project Management
1.5.1 Process Management and Product Engineering Process;
1.5.2 Process Framework

1.6 Process Models
1.6.1 Waterfall Model; 1.6.2 Prototyping Model;
1.6.3 Spiral Model; 1.6.4 Fourth Generation Techniques (4GT)

1.7 Role of Software Metrics and Measurement
1.7.1 Software Measurement; 1.7.2 Software Metrics

1.8 Let us Summarize; 1.9 Answers to ‘Check Your Progress’
1.10 Questions and Exercises; 1.11 Further Reading

UNIT 2: SOFTWARE PROJECT PLANNING AND COST ESTIMATION 33–63
2.0 Introduction; 2.1 Unit Objectives
2.2 Project Planning

2.2.1 Project Purpose; 2.2.2 Project Scope;
2.2.3 Project Planning Process; 2.2.4 Project Plan

2.3 Project Scheduling
2.4 Basics of Cost Estimation

2.4.1 Resources for Software Cost Estimation; 2.4.2 Software Product Cost Factors
2.5 Software Cost Estimation Process
2.6 Decomposition Techniques

2.6.1 Problem-based Estimation; 2.6.2 Process-based Estimation
2.7 Cost Estimation Models

2.7.1 Constructive Cost Model; 2.7.2 Software Equation
2.8 Let us Summarize; 2.9 Answers to ‘Check Your Progress’
2.10 Questions and Exercises; 2.11 Further Reading

UNIT 3: SYSTEM ANALYSIS 65–111
3.0 Introduction; 3.1 Unit Objectives
3.2 What is Software Requirement?

3.2.1 Guidelines for Expressing Requirements; 3.2.2 Types of Requirements;
3.2.3 Requirements Engineering Process

3.3 Feasibility Study
3.3.1 Types of Feasibility; 3.3.2 Feasibility Study Process

3.4 Requirements Elicitation
3.4.1 Elicitation Techniques

3.5 Requirements Analysis
3.5.1 Structured Analysis; 3.5.2 Object-oriented Modelling; 3.5.3 Other Approaches

3.6 Requirements Specification
3.6.1 Structure of SRS

3.7 Requirements Validation
3.7.1 Requirement Review; 3.7.2 Other Requirement Validation Techniques

3.8 Requirements Management
3.8.1 Requirements Management Process; 3.8.2 Requirements Change Management

3.9 Case Study: Student Admission and Examination System
3.9.1 Problem Statement; 3.9.2 Data Flow Diagrams;
3.9.3 Entity Relationship Diagram; 3.9.4 Software Requirements Specification Document

3.10 Data Dictionary; 3.11 Let us Summarize
3.12 Answers to ‘Check Your Progress’; 3.13 Questions and Exercises
3.14 Further Reading

UNIT 4: SOFTWARE DESIGN 113–155
4.0 Introduction; 4.1 Unit Objectives
4.2 Basics of Software Design

4.2.1 Principles of Software Design; 4.2.2 Software Design Concepts;
4.2.3 Developing a Design Model

4.3 Data Design
4.4 Architectural Design

4.4.1 Architectural Design Representation; 4.4.2 Architectural Styles
4.5 Procedural Design

4.5.1 Functional Independence
4.6 User Interface Design

4.6.1 User Interface Rules; 4.6.2 User Interface Design Process
4.6.3 Evaluating User Interface Design

4.7 Software Design Notation
4.8 Software Design Reviews

4.8.1 Types of Software Design Reviews; 4.8.2 Software Design Review Process;
4.8.3 Evaluating Software Design Reviews

4.9 Software Design Documentation (SDD)
4.10 Case Study: Higher Education Online Library System

4.10.1 Data Design; 4.10.2 Architectural Design; 4.10.3 Procedural Design;
4.10.4 User Interface Design

4.11 Object-oriented Concepts; 4.12 Let us Summarize
4.13 Answers to ‘Check Your Progress’; 4.14 Questions and Exercises
4.15 Further Reading

UNIT 5: SOFTWARE TESTING 157–206
5.0 Introduction; 5.1 Unit Objectives
5.2 Software Testing Basics

5.2.1 Principles of Software Testing; 5.2.2 Testability; 5.2.3 Characteristics of Software Test
5.3 Test Plan; 5.4 Test Case Design;
5.5 Software Testing Strategies

5.5.1 Unit Testing; 5.5.2 Integration Testing; 5.5.3 System Testing; 5.5.4 Validation Testing
5.6 Testing Techniques

5.6.1 White Box Testing; 5.6.2 Black Box Testing;
5.6.3 Difference between White Box and Black Box Testing; 5.6.4 Gray Box Testing

5.7 Object-oriented Testing
5.7.1 Testing of Classes; 5.7.2 Developing Test Cases in Object-oriented Testing
5.7.3 Object-oriented Testing Methods

5.9 Let us Summarize; 5.10 Answers to ‘Check Your Progress’
5.11 Questions and Exercises; 5.12 Further Reading

Self-Instructional Material 1

Introduction

INTRODUCTION

Software as a technology is changing the face of the world and is the driving force behind
many aspects of business, science and engineering. As computing systems become more
powerful and complex the need of systematic approaches in software development has
become inevitable. Software engineering provides methods and tools to deal with the
complexities involved in software development and enables us to develop a high-quality,
reliable, maintainable, and error free software that satisfies customers’ requirements.
Since the coining of the word, software engineering has evolved from an obscure idea
practised by relatively small number of people to a full-fledged engineering discipline. Today,
it is accepted as a subject that involves intensive research and diligent study. Universities
the world over have incorporated software engineering as an integral part of Computer
Science, Computer Application, and Information Technology curricula.
This book provides an in-depth coverage of fundamental principles, methods and applications
of software engineering and meets the requirements of software engineering students enrolled
in MCA course. The text is presented in simple, concise, and easy-to-understand language.
Also, the subject matter is well supported by examples, tables, diagrams, and case studies
to make topics clear and understandable.
The text in this book has been organized into five units:
Unit 1 introduces software and software engineering concepts. Also, the unit deals with
the various software process models used to develop software systems.
Unit 2 provides the foundation to learn project planning process and helps to understand
the factors influencing the cost of developing a software product.
Unit 3 helps to understand the requirement process and how software requirement
specification lays foundation for other software engineering activities.
Unit 4 helps to understand the various design elements in the design model and the various
design notations used to represent software design.
Unit 5 discusses the basics of software testing, software testing strategies and various
testing techniques.
For any suggestions and comments about this book, please feel free to send your feedback
at feedback@itlesl.com
Hope you enjoy reading this book as much as we have enjoyed writing it.

Software Process
and Process Models

Self-Instructional Material 3

NOTES

UNIT 1 SOFTWARE PROCESS
AND PROCESS MODELS

Structure
1.0 Introduction
1.1 Unit Objectives
1.2 Software

1.2.1 History of Software Development; 1.2.2 Software Characteristics
1.2.3 Software Components; 1.2.4 Evolution of Software Engineering;
1.2.5 Evolution of Software Engineering

1.3 Software Engineering: Definition
1.3.1 Software Engineer

1.4 Phases in Software Engineering
1.4.1 Preliminary Investigation; 1.4.2 Case Study: Bridge and Software Development

1.5 Software Project Management
1.5.1 Process Management and Product Engineering Process
1.5.2 Process Framework

1.6 Process Models
1.6.1 Waterfall Model; 1.6.2 Prototyping Model
1.6.3 Spiral Model; 1.6.4 Fourth Generation Techniques (4GT)

1.7 Role of Software Metrics and Measurement
1.7.1 Software Measurement; 1.7.2 Software Metrics

1.8 Let us Summarize
1.9 Answers to ‘Check Your Progress’
1.10 Questions and Exercises
1.11 Further Reading

1.0 INTRODUCTION

Software systems have become ubiquitous. These systems are now virtually present in all
electronic and electric equipments. Be it electronic gizmos and gadgets, traffic lights, medical
equipments—almost all electrical equipments are run by software. Software is an intangible
entity that embodies instructions and programs, which drives the actual functioning of a
computer system.

In the early days of computers, the computer memory was small, its language consisted of
binary and machine code, and programmers used to develop code that could be used in
developing more than one software system. Thus, the developed software was simple in nature
and did not involve much creativity from the developers’ end. However, as technology improved,
there was a need to build bigger and complex software systems in order to meet the users’
changing and growing requirements. This led to emergence of software engineering which
included development of software processes and various process models. Software process
helps in developing a timely, high-quality, and highly efficient product or system. It consists
of activities, constraints, and resources that are used to produce an intended system. Software
process helps to maintain a level of consistency and quality in products or services that are
produced by many different people.

In this chapter we focus on what is software, how software engineering evolved, why
process models are used, and why software metrics and measurement are used.

Software Engineering

4 Self-Instructional Material

NOTES

1.1 UNIT OBJECTIVES

After reading this unit, the reader will understand:
• History of software development.
• Software characteristics and classification of software.
• Various software myths, such as management myths, user myths, and developer myths.
• Software crisis, which has been used since the early days of software engineering to

describe the impact of the rapid increases in computer power and its complexity.
• What is software engineering?
• The role of software engineer.
• Phased development of software, which is often referred to as software development

life cycle.
• What is software process, project, and product?
• The major components of software process, which helps in developing a product that

accomplishes user requirements.
• How process framework determines the processes that are essential for completing a

complex software project.
• The need for process assessment to ensure that it meets a set of basic process criteria.
• Various process models, which comprises of processes, methods, steps for developing

software.
• The role of software metrics and measurement.

1.2 SOFTWARE
Software can be defined as a collection of programs, documentation and operating
procedures. Institute of Electrical and Electronic Engineers (IEEE) defines software as “a
collection of computer programs, procedures, rules, and associated documentation and
data”. Software possesses no mass, no volume, and no colour, which makes it a non-
degradable entity over a long period. Software does not wear out or get tired. According to
the definition of IEEE, software is not just programs, but includes all the associated
documentation and data.
Software is responsible for managing, controlling, and integrating the hardware components
of a computer system and to accomplish any given specific task. Software instructs the
computer about what to do and how to do it. For example, software instructs the hardware
how to print a document, take input from the user, and display the output.
Computers need instructions to carry out the intended task. These instructions are given in
the form of computer programs. Computer programs are written in computer programming
languages, such as C, C++, and so on. A set of programs, which is specifically written to
provide users a precise functionality like solving specific problem is termed as software
package. For example, an accounting software package helps users in performing accounting
related activities.

1.2.1 History of Software Development
Software development came into existence in later half of 1940s, when the first stored-
program computer was created at Cambridge EDSAC. Earlier the programs were created
as binary machine instructions. This approach of programming was considered slow and
cumbersome, as it was difficult for humans to memorise long and complex binary strings.
For this, the notion of human-readable shorthand for designing programs was formed.
Some of the important datelines in the history of software development are listed in
Table 1.1.

Software Process
and Process Models

Self-Instructional Material 5

NOTES

1.2.2 Software Characteristics
Different individuals judge software on different basis. This is because they are involved
with the software in different ways. For example, users want the software to perform
according to their requirements. Similarly, developers involved in designing, coding and
maintenance of the software evaluate the software by looking at the internal characteristics
of the products, before delivering it to the user. Software characteristics are classified into
six major components. These components are listed below:

SOFTWARE

CHARACTERISTIC
S

Maintainability

Reliability Por
ta

bil
ity

Figure 1.1 Characteristics of Software

Table 1.1 History of Software Development

Period Description

1950s Majority of the programmer’s time was spent in correcting errors in the software. By late
1950s, managing program even with the aid of reusable subroutines was becoming
uneconomical. Hence, research in the area of automatic programming began. Automatic
programming allowed programmer to write program in high-level language code, which
was easy to read. This programming improved the productivity of the programmers and
made program portable across hardware platforms.

1960s Software was developed for specific areas and was being marketed and sold separately
from hardware. This marked a deviation from earlier practices of giving software free as a
part of the hardware platform. In addition, hiding of internal details of an operating system
using abstract programming interfaces improved the productivity of the programmer.

1970s With the development of structured design, software development models were introduced.
These were based on a more organic, evolutionary approach, deviating from the waterfall-
based methodologies of hardware engineering. Research was done on quantitative techniques
for software design. During this time, researchers began to focus on software design to
address the problems of developing complex software systems.

1980s Software engineering research shifted focus toward integrating designs and design processes
into the larger context of software development process and management. In the latter half
of the 1980s a new design paradigm known as object-oriented modelling was introduced.
Software engineers using the OOPs technique were able to model both the problems
domain and solution domain within the programming languages.

1990s Object orientation was augmented with design techniques, such as class/responsibilities/
collaborators (CRC) cards and use case analysis. Methods and modelling notations from
the structured design made their way into the object-oriented modelling methods. This
included diagramming techniques, such as state transition diagrams and processing models.

Presently A multi viewed approach to design is used to manage the complexity of designing and
developing large-scale software systems. This multi view approach has resulted in the
development of the unified modelling language (UML), which integrates modelling concepts
and notations from many methodologies.

Software Engineering

6 Self-Instructional Material

NOTES

• Functionality: Refers to the degree of performance of the software against its intended
purpose.

• Reliability: Refers to the ability of software to perform a required function under
given conditions for a specified period.

• Usability: Refers the degree to which software is easy to use.
• Efficiency: Refers to the ability of software to use system resource in the most effective

and efficient manner.
• Maintainability: Refers to the ease with which a software system can be modified to

add capabilities, improve system performance, or correct errors.
• Portability: Refers to the ease with which software developers can transfer software

from one platform to another, without (or with minimum) changes. In simple terms, it
refers to the ability of software to function properly on different hardware and software
platforms without making any changes in it.

In addition to the above-mentioned characteristics, robustness and integrity are also considered
to be important. Robustness refers to the extent to which software can continue to operate
correctly despite the introduction of invalid input, while integrity refers to the extent to
which unauthorised access or modification of software or data can be controlled in the
computer system.

1.2.3 Software Components
A software component is defined as an independent executable software element with a
well-defined set of inputs, outputs and interface. All the services provided by a component
are made available through the interface and all the interactions with the component are
done through that interface. Council and Heinmann define the term software component as
follows.
“A software component is a software element that conforms to a component model and can
be independently deployed and composed without modification according to a composition.”
Szyperski describes the term as follows.
“A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently
and is subject to composition by third parties.”
The software engineering that emphasizes the design and development of computer-based
systems using software components is called component-based software engineering (CBSE).
The main objective of CBSE is to standardize the interfaces between software components
so that they can be assembled easily to develop new software. The basic idea behind CBSE
is to reuse the existing components. The components developed for a specific application
have to be generalized to make them reusable. In other words, the more generalized interface,
the greater the reusability. Apart from the advantage of reusability, the components have the
following advantages.

The components are independent and hence, they do not interfere with each other and
are easy to modify.
The inner workings of the components are hidden from the user.
The components do not have to be compiled prior to their use with other components.
The communication and interaction with the components is done through well-defined
interfaces.
The component platforms are shared and hence, the development costs are
reduced.

There are some characteristics that a software program must possess before it qualifies as
a component. These are given below.

Software Process
and Process Models

Self-Instructional Material 7

NOTES

It should be independent and deployable, that is, it has to be a self-contained and stand-
alone entity and it should not depend on other software components for its use.
It should provide some pre-defined interfaces and all interactions must take through
these interfaces.
It should have a complete documentation so that the users of the component can
decide whether or not the component is meeting their needs.
It has to conform to some specified standards.
It should be language-independent.

1.2.3.1 Components Applications

Software can be applied in countless situations, such as in business, education, social
sector, and in other fields. The only thing that is required is a defined set of procedural
steps. That is, software can be engaged in any field, which can be described in logical and
related steps. Every software is designed to suit some specific goals. These goals are data
processing, information sharing, communication, and so on. Software is classified according
to the range of potential applications. These classifications are listed below:

• System software: This class of software is responsible for managing and controlling
operations of a computer system. System software is a group of programs rather than
one program and is responsible for using computer resources efficiently and effectively.
For example, operating system is system software, which controls the hardware, manages
memory and multi-tasking functions, and acts as an interface between applications
programs and the computer.

• Real-time software: This class of software observes, analyses, and controls real world
events as they occur. Generally, a real-time system guarantees a response to an external
event within a specified period of time. For example, real-time software is used for
navigation in which the computer must react to a steady flow of new information
without interruption. Most of the defence organisations all over the world use real-time
software to control their military hardware.

• Business software: This class of software is widely used in areas where the management
and control of financial activities is of utmost importance. The fundamental component of
a business software comprises of payroll, inventory, accounting, and software that permits
user to access relevant data from the database. These activities are usually performed with
the help of specialised business software that facilitates efficient framework in the business
operation and in management decisions.

• Engineering and scientific software: This class of software has emerged as a powerful
tool to provide help in the research and development of next generation technology.
Applications, such as study of celestial bodies, study of under-surface activities, and
programming of orbital path for space shuttle are heavily dependent on engineering and
scientific software. This software is designed to perform precise calculations on complex
numerical data that are obtained during real-time environment.

• Artificial intelligence (AI) software: This class of software is used where the problem
solving technique is non-algorithmic in nature. The solutions of such problems are
generally non-agreeable to computation or straightforward analysis. Instead, these
problems require specific problem solving strategies that include expert system, pattern
recognition, and game playing techniques. In addition, it involves different kinds of
searching techniques including the use of heuristics. The role of artificial intelligence
software is to add certain degree of intelligence into the mechanical hardware to have
the desired work done in an agile manner.

• Web-based software: This class of software acts as an interface between the user and
the Internet. Data on the Internet can be in the form of text, audio, or video format,

Software Engineering

8 Self-Instructional Material

NOTES

linked with hyperlinks. Web browser is a web-based software that retrieves web pages
from the Internet. The software incorporates executable instructions written in special
scripting languages, such as CGI or ASP. Apart from providing navigation on the web,
this software also supports additional features that are useful while surfing the Internet.

• Personal computer (PC) software: This class of software is used for official and
personal use on daily basis. The personal computer software market has grown over
the last two decades from normal text editor to word processor and from simple
paintbrush to advance image-editing software. This software is used predominantly in
almost every field, whether it is database management system, financial accounting
package, or a multimedia based software. It has emerged as a versatile tool for daily life
applications.

Software can be also classified in terms of how closely software users or software purchasers
are associated with the software development.
• Commercial off the shelf (COTS): In this category comes the software for which

there is no committed user before it is put up for sale. The software users have less or
no contact with the vendor during development. It is sold through retail stores or
distributed electronically. This software includes commonly used programs, such as
word processors, spreadsheets, games, income tax programs, as well as software
development tools, such as, software testing tools and object modelling tools.

• Customised or bespoke: In this classification, software is developed for a specific
user, who is bound by some kind of formal contract. For example, software developed
for an aircraft is usually done for a particular aircraft making company. They are not
purchased ‘off-the-shelf’ like any word processing software.

• Customised COTS: In this classification, user can enter into a contract with the software
vendor to develop a COTS product for a special purpose, that is, software can be
customised according to the needs of the user. Another growing trend is the development
of COTS software components—components that are purchased and used to develop
new applications.

The COTS software component vendors are essentially parts stores, which are classified
according to their application types. These types are listed below:
• Stand-alone Software: Resides on a single computer and does not interact with any

other software installed in a different computer.
• Embedded Software: Part of unique application involving hardware like automobile

controller.
• Real-time Software: Operations execute within very short time limits, often

microseconds. For example, radar software in air traffic control system.
• Network Software: Software and its components interact across a network.

(a) Stand-alone
(b) Embedded

(c) Real-time
(d) Network

Figure 1.2 Types of Customised COTS

Software Process
and Process Models

Self-Instructional Material 9

NOTES

1.2.5 Evolution of Software Engineering
In the late 1960s, it was clear that software development was unlike the construction of
physical structures. This was because in software development, more programmers could
not be added simply to speed up a lagging development project. Software had become a
critical component of many systems, yet it was too complex to develop with any certainty
of schedule or quality. This problem imposed financial and public safety concerns.

Software errors have caused large-scale financial losses as well as inconvenience to many.
Disasters, such as Y2K problem have affected economic, political, and administrative system
of various countries around the world. This situation where catastrophic failures have
occurred is known as Software crisis.

Software crisis is a term that has been used since the early days of software engineering to
describe the impact of the rapid increases in computer power and its complexity. Software
crisis occurs due to problems associated with poor quality software. This includes problems
arising from malfunctioning of software systems, inefficient development of software,
and most importantly, dissatisfaction among users of the software. Other problems associated
with software are listed below:

• Software complexity can be managed by dividing the system into subsystems, but, as
systems grow, the interaction between subsystems increases non-linearly. This leads to
a situation where problem domain cannot be understood properly.

• It is difficult to establish an adequate and stable set of requirements for a software
system. This is because hidden assumptions exist. In addition, there is no analytic
procedure available for determining whether the developers are aware of the user’s
requirements or not, thus creating an environment where both users and developers are
unaware of the requirements.

Software market today has a turnover of more than millions of rupees. Out of this,
approximately 30% of software is used for personal computers and the remaining software
is developed for specific users or organizations. Application areas, such as the banking
sector are completely dependent on software application for their working. Software failures
in these technology-oriented areas have led to considerable loss in terms of time, money,
and even human lives. History has seen many such failures. Some of these are listed below:

• During the gulf war in 1991, United States of America used Patriot missile as a defence
against Iraqi Scud missile. However, this Patriot failed to hit Scud missile many times.
As a result 28 US soldiers were killed in Dhahran, Saudi Arabia. An inquiry into the
incident concluded that a small bug resulted in the miscalculation of missile path.

• Arian-5 space rocket developed at the cost of $7000 million over a period of 10 years
was destroyed in 39 seconds, after its launch. The crash occurred because a software
bug existed in the rocket guidance system.

• In June 1980, the North American Aerospace Defence Command (NORAD) reported
that the US was under missile attack. The report was traced to a faulty computer circuit
that generated incorrect signals. If the developers of the software responsible for
processing these signals had taken into account the possibility that the circuit could fail,
the false alert might not have occurred.

• Year 2000 (Y2K) problem refers to the widespread snags computers had in processing
dates after the year 2000. Seeds of the Y2K trouble were planted during 1960–80,
when commercial computing was new and storing memory was relatively limited. The
developers at that time shortened the 4-digit date format like 1994 to a 2-digit format,
like 94. In the 1990s, experts began to realise this major shortcoming in the computer
application and millions were spent to handle this problem.

Software Engineering

10 Self-Instructional Material

NOTES

1.3 SOFTWARE ENGINEERING: DEFINITION

As discussed earlier, over the last 50 years there has been a dramatic advancement in the
field of technology, leading to improvements in hardware performance and profound changes
in computing architectures. This advancement has led to the production of complex
computer-based systems that are capable of providing information in a wide variety of
formats. The increase in computer power has made unrealistic computer applications a
feasible proposition, marking the genesis of an era where software products are far more
complex as compared to their predecessors. Using software engineering practices, these
complex systems can be developed in a systematic and efficient manner.

IEEE defines software engineering as “the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the application
of engineering to software.” In a nutshell, software engineering can be defined as the
technological and managerial discipline concerned with systematic production and maintenance
of software that is developed and modified on time and within cost estimates.

Software engineering is a discipline, which can be described as the combination of techniques
of engineering and all aspects of software development. This includes design, implementation,
and maintenance of software. It includes standardised approach to program development,
both in its managerial and technical aspects.

The foundation for software engineering lies in the good working knowledge of computer
science theory and practice. The theoretical background involves knowing how and when
to use data structures, algorithms, and understanding what problems can be solved and
what cannot. The practical knowledge includes through understanding of the workings of
the hardware as well as thorough knowledge of the available programming languages and
tools.

One of the main objectives of software engineering is to help developers obtain high-quality
software. This quality is achieved through use of Total Quality Management, which enables
continuous process improvement custom that leads to the development of more established
approaches to software engineering.

Software Engineering Layers: Software engineering can be viewed as a layered
technology. The various layers are listed below:

• The process layer is an adhesive that enables rational and timely development of computer
software. Process defines an outline for a set of key process areas that must be acclaimed
for effective delivery of software engineering technology.

• The method layer provides technical knowledge for developing software. This layer
covers a broad array of tasks that include requirements, analysis, design, program
construction, testing, and support phases of
the software development.

• The tools layer provides computerised or
semi-computerised support for the process
and method layer. Sometimes tools are
integrated in such a way that other tools can
use information created by one tool. This multi
usage is commonly referred to as computer
aided software engineering (CASE). CASE
combines software, hardware, and software

Check Your Progress

1. What is software?
2. Describe how software

evolved in 1960s and 1970s.
3. Explain artificial intelligence

software.
4. Define software portability.

Figure 1.3 Layers of Software
Engineering

Tool

Method

Process

La
ye

rs of Software Engineering

Software Process
and Process Models

Self-Instructional Material 11

NOTES

engineering database to create software engineering analogous to computer-aided design
(CAD) for hardware. CASE aids in application development including analysis, design,
code generation, and debugging and testing. This is possible by using CASE tools,
which provide automated methods for designing and documenting traditional-structure
programming techniques. For example, the two prominent delivered technologies using
CASE tools are application generators and PC-based workstations that provide graphics-
oriented automation of the development process.

1.3.1 Software Engineer
A software engineer is an individual responsible for analysis, design, testing, implementation,
and maintenance of effective and efficient software system. In addition, software engineer
is also responsible for maintaining subsystems and external interfaces, subject to time and
budgetary constraints.

Apart from management of analysis, specification, design and development of soft-
ware applications, software engineers oversee the certification, maintenance, and
testing of software applications. Software engineer also integrates the components of a
complex software system. Generally, software engineer should possess the following
qualities:

• Problem solving skills: Software engineer should develop algorithms and solve
programming problems.

• Programming skills: Software engineer should be well versed in data structures and
algorithms, and must be expert in one or more programming languages and possess
strong programming capabilities.

• Design approaches: Software engineer should be familiar with numerous design
approaches required during the development of software, at the same time, he should be
able to translate ambiguous requirements and needs into precise specifications, and be
able to converse with the use of a system in terms of applications.

• Software technologies: Software engineer should have good understanding of software
technologies. Ability to move among several levels of abstractions at different stages of
the software project, from specific application procedures and requirements to the
detailed coding level is also required.

• Project management: Software engineer should know how to make a project work,
on time and on budget, in order to produce quality applications and systems.

• Model of the application: Software engineer should be able to create and use a
model of the application to guide choices of the many tradeoffs that will be faced
by him. The model is used to find answers to questions about the behaviour of the
system.

In addition to the above-mentioned qualities, software engineer should have good
communication and interpersonal skills. Moreover knowledge of object-orientation, quality
concept, International Organization of Standardization (ISO standards), and Capability
Maturity Model (CMM) are also required. The tasks performed by software engineers have
evolved rapidly, which has resulted in new areas of specialization and changing technology.
Software engineers often work as part of a team that designs new hardware and software.
This team comprises of engineering, marketing, manufacturing, and designing people who
work together until the software is released.

Software Engineering

12 Self-Instructional Material

NOTES

Model of the
Application

Problem
Solving
Skills

Programming
Skills

Design
Approaches

Software
Technologies

Project
Management

Figure 1.4 Skills of Software Engineer

1.4 PHASES IN SOFTWARE ENGINEERING

Software engineering shares common interest with other engineering disciplines. In the
engineering domain, developing a solution to a given problem, whether building a bridge or
making an electronic component, involves a sequence of interconnected steps. These steps
or phases occur in software development as well. Also, since the prime objective of software
engineering is to develop methods for large systems, which produce high quality software
at low cost and in reasonable time, it is essential to perform software development in
phases. This phased development of software is often referred to as software development
life cycle (SDLC) or software life cycle.

A software development process comprises of different phases. These phases work in top
to bottom approach, implying that the phases take inputs from the previous phases, add
features, and then produce outputs. The outputs from different phases are referred to as
intermediate product, work product, or derivable. The various phases involved in the
systematic development of software are shown in Figure 1.5.

Figure 1.5 Software Development Process

Check Your Progress
5. Define software engineering.
6. What are the responsibi-

lities of software engineer?
7. Explain the process layer.

Software Process
and Process Models

Self-Instructional Material 13

NOTES

1.4.1 Preliminary Investigation
This phase commences with discussion on the requests made by the user. The requests
can be for a new system or modifying the existing system. An estimate is made of whether
the identified user needs can be satisfied with the current hardware and software technologies
or not. Preliminary investigation verifies the problem and understands the need for required
system. It considers whether the proposed system will be cost effective from business
point of view and whether it can be developed within existing budgetary constraints. In
addition, time factor, which determines the duration of the project, is also considered.

Preliminary investigation should be quick and cost effective. The output of preliminary
investigation decides whether the new system should be developed or not. There are three
constraints, which decides the go or no-go decision.

• Technical: This evaluation determines whether technology needed for proposed system
is available or not and if it is available then how can it be integrated within the organization.
Technical evaluation also determines whether the existing system can be upgraded to
use new technology and whether the organization has the expertise to use it or not.

• Time: This evaluation determines the time needed to complete a project. Time is an
important issue in software development as cost increases with an increase in the time
period of a project.

• Budgetary: This evaluation looks at the financial aspect of the project. Budgetary
evaluation determines whether the investment needed to implement the system will be
recovered at later stages or not.

(a) Software Analysis: This phase studies the problem or requirements of software in
detail. These requirements define the processes to be managed during the software
development. After analysing the requirements of the user, a requirement statement known
as software requirement specification (SRS) is developed. After analyses, planning for
the project begins. It includes developing plans that describes the activities to be performed
during the project, such as software configuration management plans, project and scheduling,
and the quality assurance plans. In addition, the resources required during the project are
also determined.

Table 1.2 Building Bridge and Corresponding SDLC Phase

Phase Building Bridge SDLC Phase

Preliminary investigation.

Software requirement
analysis and specifications.

Software design.

Software coding.

Software testing.

Software maintenance.

Understand the load of the bridge it
must carry, the approximate locations
where it can be built, the height
requirements, and so on.

Specify the site for the bridge, its size,
and a general outline of the type of
bridge to be built.

Determine exact configuration, size of
the cables and beams, and developing
blueprints for the bridge.
Correspond to actual building of the
bridge.

Specify load, pressure, endurance, and
robustness of the bridge.

Specify repainting, repaving, and
making any other repairs, which are
necessary.

Formulate the problem by
understanding the nature and
general requirements of the
problem.

Defining the problem
precisely.

Detailing the solution to the
problem.

Implementing.

Checking.

Maintaining.

Software Engineering

14 Self-Instructional Material

NOTES

(b) Software Design: In this phase the requirements are given a ‘defined’ form. Design
can be defined as a process of deciding information structures, in terms of efficiency,
flexibility, and reusability. During this phase, strategic and tactical decisions are made to
meet the required functional and quality requirements of a system. Software design serves
as the blueprint for the implementation of requirement in the software system. Each element
of the analysis model in the analysis phase provides information that is required to create
design models. The requirement specification of software, together with data, functional,
and behavioural models provides a platform to feed the design task to meet required functional
and quality requirements of a system.

(c) Software Coding: This phase can be defined as a process of translating the software
requirements into a programming language using tools that are available. Writing a software
code requires a thorough knowledge of programming language and its tools. Therefore, it
is important to choose the appropriate programming language according to the user
requirements. A program code is efficient if it makes optimal use of resources and contains
minimum errors.

Writing an efficient software code requires thorough knowledge of programming. However,
to implement programming, coding style is followed. This style is used for writing software
code in a programming language. Coding style also helps in writing the software code
efficiently and with minimum errors. To ensure that all developers work in a harmonised
manner (the source code should reflect a harmonised style, as if a single developer has
written the entire code in one session), the developers should be aware of the coding
guidelines before the inception of a software project.

(d) Software Testing: This testing is performed to assure that software is free from errors.
Efficient testing improves the quality of software. To achieve this, software testing requires
a thorough analysis of the software in a systematic manner. Test plan is created to test
software in a planned and systematic manner. In addition, software testing is performed to
ensure that software produces the correct outputs. This implies that outputs produced
should be according to user requirements.

(e) Software Maintenance: This phase comprises of a set of software engineering activities
that occur after software is delivered to the user. The objective of software maintenance is
to make software operational according to user requirements. The need of software
maintenance is to provide continuity of service. This implies that software maintenance
focuses on fixing errors, recovering from failures, such as hardware failures, or
incompatibility of hardware with software. In addition, it facilitates future maintenance
work by modifying the software code and databases used in the software.

After the software is developed and delivered, it may require changes. Sometimes, changes
are made in software system when user requirements are not completely met. To make
changes in software system, software maintenance process evaluates, controls, and
implements changes. Note that changes can also be forced on the software system because
of changes in government regulations or changes in policies of the organization.

1.4.2 Case Study: Bridge and Software Development
Requirements analysis, design, and implementation are concerned with, what to do, how to
do, and the way to do respectively. For example, Table 1.5 lists the phases involved in
building a bridge and also lists the corresponding software development phase.

1.5 SOFTWARE PROJECT MANAGEMENT

Project management is concerned with the overall planning and coordination of a project
from its commencement to its completion. This involves application of knowledge, skills,

Software Process
and Process Models

Self-Instructional Material 15

NOTES

tools and techniques to meet the user’s requirements within the specified time and cost.
Effective software project management primarily concentrates on process, project, and
product.

A process is defined as a series of steps involving activities and resources, which produce
the desired output. Process can also be defined as a collection of procedures to develop a
software product according to certain goals or standards. Generally, following points are
noted about software processes:

• Process uses resources subject to given constraints, and produces intermediate and
final products.

• Processes are composed of sub-processes that are organised in such a manner that
each sub-process has its own process model.

• Each process is carried out with entry and exit criteria that help in monitoring the
beginning and completion of the activity.

• Every process includes guidelines, which explain the objectives of each activity.

• Processes are vital because they impose uniformity on the set of activities.

• A process is regarded more than procedure, tools and techniques, which are collectively
used in a structured manner to produce a product.

• Software processes include various technical and management issues, which are required
to develop software.

The characteristics of software processes are listed in Table 1.6.

Table 1.3 Software Process Characteristics

Characteristics Description

Understandability The extent to which the process is explicitly defined and the ease with which the
process definition is understood.

Visibility Whether the process activities culminate in clear results or not so that the progress
of the process is visible externally.

Supportability The extent to which CASE tools can support the process activities.

Acceptability The extent to which defined process is acceptable and usable by the engineers
responsible for producing the software product.

Reliability The manner in which the process is designed so that errors in the process are
avoided or trapped before they result in errors in the product.

Robustness Whether the process can continue inspite of unexpected problems or not.

Maintainability Whether the process can evolve to reflect the changing organizational requirements
or identify process improvements.

Rapidity The speed with which the complete software can be delivered with given
specifications.

A project is defined as a specification essential for developing or maintaining a specific
product. A software project is developed when software processes or activities are executed
for certain specific requirements of the user. Thus, using software process, software
project can be easily developed. The activities in a software project comprises of various
tasks for managing resources and developing product. Figure 1.6 shows that a software
project involves people (developers, project manager, end users, and so on) also referred to
as participants who use software processes to produce a product according to user
requirements. The participants play a major role in the development of the project and they

Check Your Progress
8. Define software

development life cycle.
9. Explain different types of

constraints that are
analyzed during preliminary
investigation.

Software Engineering

16 Self-Instructional Material

NOTES

select the appropriate process for the project. In addition, a project is efficient if it is
developed within the time constraint. The outcome or the result of a software project is
known as product. Thus, a software project uses software processes to produce a product.

Figure 1.6 Software Project

Software process can consist of many software projects and each of them can produce
one or more software products. The interrelationship between these three entities (process,
project, and product) is shown in Figure 1.7. A software project begins with requirements
and ends with the accomplishment of requirements. Thus, software process should be
performed to develop final software by accomplishing the user requirements. Note that
software processes are not specific to the software project.

Software Process

Project 1 Project 2 Project n

Product 1 Product 2 Product n.

.

Figure 1.7 Processes, Projects, and Products

1.5.1 Process Management and Product Engineering Process
As stated above, the objective of software process is to develop a product, which
accomplishes user requirements. For this, software processes requires components, which
are shown in Figure 1.8. The major components of software process include process
management process and product engineering process. The process management
processes (PMP) aims at improving software processes so that a cost effective and a high
quality product is developed. To achieve a high quality product, the existing processes of
the completed project are examined. The process of comprehending the existing process,
analysing its properties, determining how to improve it, and then affecting the improvement
is carried out by PMP. A group known as software engineering process group (SEPG)
performs the activities of process management.

Based on the analysis stated above, the product engineering processes are improved,
thereby improving the software process. The aim of product engineering processes is to
develop the product according to user requirements. The product engineering process
comprises of three major components, which are listed below:

• Development process: Implies the process, which is used during the development of
software. It specifies the development and quality assurance activities that are to be

Software Process
and Process Models

Self-Instructional Material 17

NOTES

performed. Programmers, designers, testing personnel, and others perform these
processes.

• Project management process: Provides means to plan, organise and control the allocated
resources to accomplish project costs, time and performance objectives. For this, various
processes, techniques and tools are used to achieve the objectives of the project. Project
management performs the activities of this process. Also, project management process
is concerned with the set of activities or tasks, which are used to successfully accomplish
a set of goals.

• Configuration control process: Manages changes that occur as a result of modifying
the requirements. In addition, it maintains integrity of the products with the changed
requirements. The activities in configuration control process are performed by a group
called configuration control board (CCB).

Software Process

Process
Management

Process

Product
Engineering

Process

Development
Process

Project
Management

Process

Configuration
Control Process

Figure 1.8 Software Processes

Note that project management process and configuration control process depend on the
development process. The management process aims to control the development process,
depending on the activities in the development process.

1.5.2 Process Framework
Process framework determines the processes, which are essential for completing a complex
software project. This framework identifies certain activities, which are applicable to all
software projects, regardless of their type and complexity. The activities used for these
purposes are commonly referred to as framework activities, as shown in Figure 1.9.
Some of the framework activities are listed below:

• Communication: Involves communication with the user so that the requirements
are easy to understand.

• Planning: Establishes a project plan for the project. In addition, it describes the schedule
for the project, technical tasks involved, expected risks and the required resources.

• Modelling: Encompasses creation of models, which allows the developer and the user
to understand software requirements. In addition, it determines the designs to achieve
those requirements.

• Construction: Combines generation of code with testing to uncover errors in the code.

• Deployment: Implies that the final product (that is, the software) is delivered to the
user. The user evaluates the delivered product and provides a feedback based on the
evaluation.

Software Engineering

18 Self-Instructional Material

NOTES
Framework Activity # 1

Software Process
Process Framework

Umbrella Activities

Framework Activity # n

Figure 1.9 Process Framework

In addition to these activities, process framework also comprises of a set of activities
known as umbrella activities. The umbrella activities are used throughout the software
process and are listed below:

• Software project tracking and control: Monitors the actual process so that management
can take necessary steps if software project deviates from the laid plans. It involves
tracking procedures and reviews to check whether the software project is according to
user requirements or not. A documented plan is used as a basis for tracking the software
activities and revising the plans. The management monitors these activities.

• Formal technical reviews: Assess the code, products and documents of software
engineering practises to detect errors.

• Software quality assurance: Assures that software is according to the requirements. In
addition, it is designed to evaluate the processes of developing and maintaining quality of
the software.

• Reusability management: Determines the criteria for products’ reuse and establishes
mechanisms to achieve reusable components.

• Software configuration management: Manages the changes made in the software
processes of the products throughout the software project life cycle. It controls changes
made to the configuration and maintains the integrity in the software development process.

• Risk management: Identifies, analyses, evaluates and eliminates the possibility of
unfavourable deviations from expected results, by a systematic activity and then develops
strategies to manage them.

1.6 PROCESS MODELS

A process model also known as software engineering paradigm can be defined as a
strategy which comprises of processes, methods, tools or steps for developing software.
These models provide a basis for controlling various activities required to develop and
maintain software. In addition, it helps the software development team in facilitating and
understanding the activities involved in the project.

A process model for software engineering depends on the nature and application of software
project. Thus, it is essential to define process models for each software project. IEEE
defines process model as “a framework containing the processes, activities, and tasks

Software Process
and Process Models

Self-Instructional Material 19

NOTES

involved in the development, operation, and maintenance of a software product, spanning
the life of the system from the definition of its requirements to the termination of its use.”
Process model reflects the goals of software development, such as developing a high
quality product and meeting the schedule on time. In addition, it provides a flexible framework
for enhancing the processes. Other advantages of the software process model are listed
below:

• Enables effective communication: Enhances understanding and provides a specific
basis for process execution.

• Facilitates process reuse: Process development is a time-consuming and expensive
activity, thus, software development team utilise the existing processes for different
projects.

• Effective: Since process models can be used again and again; reusable processes provide
an effective means for implementing processes for software development.

• Facilitates process management: Process models provide a framework for defining
process status criteria and measures for software development. Thus, effective
management is essential to provide a clear description of the plans for the software
project.

Every software development process model takes requirements as input and delivers product
as output. However, a process should detect defects in the phases in which they occur.
This requires verification and validation (V&V) of the products after each and every phase
of software development lifecycle.

Output
ProductsRequirements

Input Process
Phase

Verification
and

Validation

Figure 1.10 Phases in Development Process

Verification is the process of evaluating a system or its component for determining the
product developed at each phase of software development. IEEE defines verification as “a
process for determining whether the software products of an activity fulfil the requirements
or conditions imposed on them in the previous activities.” Thus, it confirms that the product
is transformed from one form to another as intended and with sufficient accuracy.

Validation is the process of evaluating the product at the end of each phase to ensure
compliance with the requirements. In addition, it is the process of establishing a procedure
and a method, which performs according to the intended outputs. IEEE defines validation
as “a process for determining whether the requirements and the final, as-built system or
software product fulfils its specific intended use.” Thus, validation substantiates the software
functions with sufficient accuracy with respect to its requirement specifications.
Various kinds of process models used are waterfall model, prototyping model, spiral model,
and fourth generation techniques.

1.6.1 Waterfall Model
In waterfall model (also known as classical life cycle model) the development of software
proceeds linearly and sequentially from requirement analysis to design, coding, testing,
integration, implementation, and maintenance. Thus, this model is also known as linear
sequential model.

This model is simple to understand, and represents processes, which are easy to manage
and measure. Waterfall model comprises of different phases and each phase has its distinct
goal. Figure 1.11 shows that once a phase is completed, the development of software

Check Your Progress
10. What is software project

management?
11. What is the aim of process

management processes
(PMP)?

12. Define process
framework.

Software Engineering

20 Self-Instructional Material

NOTES

proceeds to the next phase. Each phase modifies the intermediate product to develop a new
product as an output. The new product becomes the input of the next process as listed in
Table 1.4.

Product
Process

Iteration
Maintenance
Process

ProductoutputProductinput

Changed
RequirementsSystem/

Information
Engineering
Modelling

Requirements
Analysis

Design

Coding

Testing

Implementation
and

MaintenanceDelivery

Integration

Programming

Design

Requirements
Engineering

Maintenance

Figure 1.11 Waterfall Model

Table 1.4 Processes and Products of Waterfall Model

Input to the Phase Process/Phase Output of the Phase

Requirements defined through Requirements analysis Software requirements specification
communication document

Software requirements specification Design Design specification document
document

Design specification document Coding Executable software modules

Executable software modules Testing Integrated product

Integrated product Implementation Delivered software

Delivered software Maintenance Changed requirements

As stated earlier, waterfall model comprises of several phases. These phases are listed
below:

• System/information engineering modelling: Establishes the requirements for the
system known as computer based system. Hence, it is essential to establish the
requirement of that system. A subset of requirements is allocated to the software. The
system view is essential when the software interacts with the hardware. System
engineering includes collecting requirements at the system level. The information gathering
is necessary when the requirements are collected at a level where all decisions regarding
business strategies are taken.

• Requirement analysis: Focuses on the requirements of the software which is to be
developed. It determines the processes that are incorporated during the development of
software. To specify the requirements’ users specification should be clearly understood
and the requirements should be analysed. This phase involves interaction between user
and software engineer, and produces a document known as software requirement
specification (SRS).

• Design: Determines the detailed process of developing software after the requirements
are analysed. It utilises software requirements defined by the user and translates them

Software Process
and Process Models

Self-Instructional Material 21

NOTES

into a software representation. In this phase, the emphasis is on finding a solution to
the problems defined in the requirement analysis phase. The software engineer, in this
phase is mainly concerned with the data structure, algorithmic detail, and interface
representations.

• Coding: Emphasises on translation of design into a programming language using the
coding style and guidelines. The programs created should be easy to read and understand.
All the programs written are documented according to the specification.

• Testing: Ensures that the product is developed according to the requirements of the
user. Testing is performed to verify that the product is functioning efficiently with
minimum errors. It focuses on the internal logics and external functions of the software
and ensures that all the statements have been exercised (tested). Note that testing is a
multi-stage activity, which emphasises verification and validation of the product.

• Implementation and maintenance: Delivers fully functioning operational software
to the user. Once the software is accepted and deployed at the user’s end, various
changes occur due to changes in external environment (these include upgrading new
operating system or addition of a new peripheral device). The changes also occur due
to changing requirements of the user and the changes occurring in the field of
technology. This phase focuses on modifying software, correcting errors, and improving
the performance of the software.

The various advantages and disadvantages associated with waterfall model are listed in
Table 1.5.

Table 1.5 Advantages and Disadvantages of Waterfall Model

Advantages Disadvantages

1.6.2 Prototyping Model
The prototyping model is applied when there is an absence of detailed information regarding
input and output requirements in the software. Prototyping model is developed on the
assumption that it is often difficult to know all the requirements at the beginning of a
project. It is usually used when there does not exist a system or in case of large and
complex system where there is no manual process to determine the requirements.
Prototyping model increases flexibility of the development process by allowing the user to
interact and experiment with a working representation of the product known as prototype.
A prototype gives the user an actual feel of the system.
At any stage, if the user is not satisfied with the prototype, it can be thrown away and an
entirely new system is developed. Generally, prototyping can be prepared by following the
approaches listed below:

Relatively simple to understand.

Each phase of development proceeds sequentially.

Allows managerial control where a schedule with
deadlines is set for each stage of development.

Helps in controlling schedules, budgets, and
documentation.

Requirements need to be specified before the
development proceeds.
 The changes of requirements in later phases of
the waterfall model cannot be done. This
implies that once an application is in the testing
phase, it is difficult to incorporate changes at
such a late phase.
No user involvement and working version of
the software is available when the software is
developed.
Does not involve risk management.
Assumes that requirements are stable and are
frozen across the project span.

Software Engineering

22 Self-Instructional Material

NOTES

• By creating major user interfaces without any substantive coding in the background in
order to give the users a feel of what the system will look like.

• By abbreviating a version of the system that will perform limited subsets of functions.
• Using system components to demonstrate functions that will be included in the developed

system.
Figure 1.12 illustrates the steps carried out in prototyping model. All these steps are
listed below:

Requirements
Gathering &

Analysis
Engineer
Product

Refining
Prototype

User
Evaluation

Build
Prototype

Quick
Design

Stop
Start

Prototyping

Figure 1.12 Prototyping Model

1. Requirements gathering and analysis: Prototyping model begins with requirements
analysis, and the requirements of the system are defined in detail. The user is interviewed
to know the requirements of the system.

2. Quick design: When requirements are known, a preliminary design or a quick design
for the system is created. It is not a detailed design, however, it includes the important
aspects of the system, which gives an idea of the system to the user. Quick design
helps in developing the prototype.

3. Build prototype: Information gathered from quick design is modified to form a
prototype. The first prototype of the required system is developed from quick design.
It represents a ‘rough’ design of the required system.

4. Assessment or user evaluation: Next, the proposed system is presented to the user
for consideration as a part of development process. The users thoroughly evaluate the
prototype and recognise its strengths and weaknesses, such as what is to be added or
removed. Comments and suggestions are collected from the users and are provided to
the developer.

5. Prototype refinement: Once the user evaluates the prototype, it is refined according
to the requirements. The developer revises the prototype to make it more effective and
efficient according to the user requirement. If the user is not satisfied with the developed
prototype, then a new prototype is developed with the additional information provided
by the user. The new prototype is evaluated in the same manner, as the previous
prototype. This process continues until all the requirements specified by the user are
met. Once the user is satisfied with the developed prototype, a final system is developed
based on the final prototype.

6. Engineer product: Once the requirements are completely known, user accepts the
final prototype. The final system is thoroughly evaluated and tested followed by routine
maintenance on continuing basis to prevent large-scale failures and to minimise
downtime.

The various advantages and disadvantages associated with prototyping model are listed in
Table 1.6.

Software Process
and Process Models

Self-Instructional Material 23

NOTES

Table 1.6 Advantages and Disadvantages of Prototyping Model

Advantages Disadvantages

1.6.3 Spiral Model
In 1980’s Boehm introduced a process model known as spiral model. The spiral model
comprises of activities organised in a spiral, which has many cycles. This model combines
the features of prototyping model and waterfall model and is advantageous for large, complex
and expensive projects. The spiral model determines requirement problems in developing
the prototypes. In addition, spiral model guides and measures the need of risk management
in each cycle of the spiral model. IEEE defines spiral model as “a model of the software
development process in which the constituent activities, typically requirements analysis,
preliminary and detailed design, coding, integration, and testing, are performed iteratively
until the software is complete.”
The objective of spiral model is to emphasise management to evaluate and resolve risks in
the software project. Different areas of risks in the software project are project overruns,
changed requirements, loss of key project personnel, delay of necessary hardware,
competition from other software developers, and technological breakthroughs, which
obsolete the project. Figure 1.13 shows the spiral model and the steps involved in the model
are listed below:
1. Each cycle of the first quadrant commences with identifying the goals for that cycle.

In addition, it determines other alternatives, which are possible in accomplishing those
goals.

2. The next step in the cycle evaluates alternatives based on objectives and constraints.
This process identifies the areas of uncertainty and focuses on significant sources of
the project risks. Risk signifies that there is a possibility that the objectives of the
project cannot be accomplished. If so the formulation of a cost effective strategy for
resolving risks is followed. Figure 1.13 shows the strategy, which includes prototyping,
simulation, benchmarking administrating user questionnaires or risk resolution technique.

3. The development of the software depends on remaining risks. The third quadrant
develops the final software while considering the risks that can occur. Risk management
considers the time and effort to be devoted to each project activity, such as planning,
configuration management, quality assurance, verification, and testing.

Provides a working model to the user early in the
process, enabling early assessment and increasing
user confidence.
Developer gains experience and insight by
developing a prototype, thereby resulting in better
implementation of requirements.
Prototyping model serves to clarify requirements,
which are not clear, hence reducing ambiguity and
improving communication between developer and
user.
There is a great involvement of users in software
development. Hence, the requirements of the
users are met to the greatest extent.
Helps in reducing risks associated with the project.

If the user is not satisfied by the developed
prototype, then a new prototype is developed.
This process goes on until a perfect prototype
is developed. Thus, this model is time
consuming and expensive.
Developer looses focus of the real purpose of
prototype and compromise with the quality
of the product. For example, they apply some
of the inefficient algorithms or inappropriate
programming languages used in developing the
prototype.
Prototyping can lead to false expectations. It
often creates a situation where user believes
that the development of the system is finished
when it is not.
The primary goal of prototyping is rapid
development, thus, the design of system can
suffer as it is built in a series of layers without
considering integration of all the other
components.

Software Engineering

24 Self-Instructional Material

NOTES

4. The last quadrant plans the next step, and includes planning for the next prototype and
thus, comprises of requirements plan, development plan, integration plan, and test
plan.

One of the key features of the spiral model is that each cycle is completed by a review
conducted by the individuals or users. This includes the review of all the intermediate
products, which are developed during the cycles. In addition, it includes the plan for next
cycle and the resources required for the cycle.

Operational
prototype

Prototype3Prototype2Prototype1

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis

Evaluate alternatives,
identify, resolve risks

Progress
through
steps

Cumulative Cost

Simulations, models, benchmarks

Detailed
design

Requirements
validation

Software
product
design

Software
requirements

Development
plan

Requirements plan
Life-cycle plan

Plan next phases

Integration
and test

plan

Commitment
partitionReview

Design validation
and verification

Implemen-
tation

Acceptance
test

Integration
and test

Unit
test

Code

Develop, verify
next-level product

Concept of
operation

Determine
objectives,

alternatives,
constraints

Figure 1.13 Spiral Model

Detailed
Design

Code

Unit
Test

Integration
and Test

Acceptance
Test

Implemen-
tation

Design

Coding

Testing

Implementation
and

Maintenance

Programming

Integration

Delivery

Develop, Verify
next-level Product

Figure 1.14 Spiral and Waterfall Model

Software Process
and Process Models

Self-Instructional Material 25

NOTES

The spiral model is similar to the waterfall model, as software requirements are understood
at the early stages in both the models. However, the major risks involved with developing
the final software are resolved in spiral model. When these issues are resolved, a detail
design of the software is developed. Note that processes in the waterfall model are followed
by different cycles in the spiral model as shown in Figure 1.14.

The various advantages and disadvantages associated with spiral model are listed in
Table 1.7.

Spiral model is also similar to prototyping process model. As one of the key features of
prototyping is to develop a prototype until the user requirements are accomplished. The
second step of the spiral model functions similarly. The prototype is developed to clearly
understand and achieve user requirements. If the user is not satisfied with the prototype, a
new prototype known as operational prototype is developed.

Table 1.7 Advantages and Disadvantages of Spiral Model

Advantages Disadvantages

1.6.4 Fourth Generation Techniques (4GT)
Fourth generation techniques enable software engineers to specify characteristics of software
at a high level and then automatically generate the source code. In addition to being a
process model, fourth generation techniques are a collection of software tools used by
software engineers to solve a problem by using a specialised language or a graphic notation
so that users easily understand the problem. Hence, fourth generation techniques use
instructions similar to spoken languages to allow the programmers to define what they
want the computer to do rather than how to do it. For this, fourth generation techniques use
certain tools, which are listed below:
• Non-procedural languages for database query.
• Report generation.
• Data manipulation.
• Screen interaction and definition.
• Code generation.
• High-level graphics capability.
• Spreadsheet capability.
• Automated generation of hypertext markup language and similar languages used for

web-site creation using advanced software tools.
The various advantages and disadvantages associated with fourth generation techniques
are listed in Table 1.8.

Avoids the problems resulting in risk-driven
approach in the software.
Specifies a mechanism for software quality
assurance activities.
Spiral model is utilised by complex and dynamic
projects.
Re-evaluation after each step allows changes in
user perspectives, technology advances or financial
perspectives.
Estimation of budget and schedule gets realistic as
the work progresses.

Assessment of project risks and its resolution
is not an easy task.
Difficult to estimate budget and schedule in
the beginning, as some of the analysis is not
done until the design of the software is
developed.

Software Engineering

26 Self-Instructional Material

NOTES

Table 1.8 Advantages and disadvantages of Fourth generation Techniques

Advantages Disadvantages

1.7 ROLE OF SOFTWARE METRICS
AND MEASUREMENT

To achieve accurate schedule and cost estimate, better quality products, and higher
productivity an effective software management is required, which in-turn can be attained
through use of software metrics. A metric is a derived unit of measurement that cannot be
directly observed, but is created by combining or relating two or more measures.

1.7.1 Software Measurement
To assess the quality of the engineered product or system and to better understand
the models that are created, some measures are used. These measures are collected
throughout the software development life cycle with an intention to improve the
software process on a continuous basis. Measurement helps in estimation, quality control,
productivity assessment, and project control throughout a software project. Also,
measurement is used by software engineers to gain insight into the design and development
of the work products. In addition, measurement assists in strategic decision-making as a
project proceeds.
Software measurements are of two categories namely, direct measures and indirect measures.
Direct measures include software processes like cost and effort applied and product like
lines of code produced, execution speed, and other defects that have been reported. Indirect
measures include products like functionality, quality, complexity, reliability, maintainability,
and much more.
Generally, software measurement is considered as a management tool, which if conducted
in an effective manner helps project manager and the entire software team to take decisions
that lead to successful completion of the project. Measurement process is characterised by
a set of five activities, which are listed below:
• Formulation: Performs measurement and develops appropriate metrics for software

under consideration.
• Collection: Collects data to derive the formulated metrics.
• Analysis: Calculates metrics and use mathematical tools.
• Interpretation: Analyses the metrics to attain insight into the quality of representation.
• Feedback: Communicates recommendation derived from product metrics to the

software team.
Note that collection and analysis activities drive the measurement process. In order to
perform these activities effectively, it is recommended to automate data collection and
analysis, establish guidelines and recommendations for each metric, and use statistical
techniques to interrelate external quality features and internal product attributes.

Development time is reduced, when used for small and
intermediate applications.

The interaction between user and developer helps in
detection of errors.

When integrated with CASE tools and code generators,
fourth generation techniques provide a solution to most
of the software engineering problems.

Difficult to use.

Limited only to small business
information systems.

Check Your Progress

13. Define process model.
14. Why is waterfall model

also referred to as linear
sequential model?

15. Explain the scenario in
which prototyping model
is best suited.

16. List the advantages
associated with fourth
generation techniques.

Software Process
and Process Models

Self-Instructional Material 27

NOTES

1.7.2 Software Metrics
Once measures are collected they are converted into metrics for use. IEEE defines metric
as “a quantitative measure of the degree to which a system, component, or process possesses
a given attribute.” The goal of software metrics is to identify and control essential parameters
that affect software development. The other objectives of using software metrics are listed
below:

• Measure the size of the software quantitatively.
• Assess the level of complexity involved.
• Assess the strength of the module by measuring coupling.
• Assess the testing techniques.
• Specify when to stop testing.
• Determine the date of release of the software.
• Estimate cost of resources and project schedule.

Note that to achieve these objectives, software metrics are applied to different projects for
a long period of time to obtain indicators. Software metrics help project managers to gain
an insight into the efficacy of the software process, project, and product. This is possible
by collecting quality and productivity data and then analysing and comparing these data
with past averages in order to know whether quality improvements have occurred or not.
Also, when metrics are applied in a consistent manner, it helps in project planning and
project management activity. For example, schedule based resource allocation can be
effectively enhanced with the help of metrics.

1.8 LET US SUMMARIZE
1. Software is a collection of programs, procedures, rules, data, and associated

documentation. Software is responsible for managing, controlling, and integrating the
hardware components of a computer system and to accomplish any given specific
task.

2. Software characteristics are classified into six major components, namely functionality,
reliability, usability, efficiency, maintainability, and portability.

3. Software can be applied in countless situations, such as in business, education, social
sector, and in other fields. The only thing that is required is a defined set of procedural
steps. Based on its applications, software is classified as system software, real-time
software, business software, engineering and scientific software, artificial intelligence
software, web-based software, and personal computer software.

4. Based on how closely software users or software purchasers are associated with the
software development, software is classified as commercial of the shelf software,
customised or bespoke software, and customised COTS software.

5. Disasters, such as Y2K problem have affected economic, political, and administrative
system of various countries around the world. This situation where catastrophic failures
have occurred is known as software crisis.

6. The major cause of software crisis is the problems associated with the poor quality of
software, such as malfunctioning of software systems, inefficient development of
software, and dissatisfaction among the users who are using the software.

7. Software engineering is defined as the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software.

8. There are three layers of software engineering, namely process layer, method layer,
and tools layer.

Check Your Progress
17. Mention various direct

and indirect measures
associated with software
measurement.

18. Define metric.

Software Engineering

28 Self-Instructional Material

NOTES

9. Software engineer is an individual responsible for analysis, design, testing,
implementation, and maintenance of effective and efficient software system.

10. Various phases involved in systematic development of software are preliminary
investigation, software analysis, software design, software coding, software testing,
and software maintenance.

11. Software process comprises of activities, which are used to develop a software project.
The major characteristics of software processes include understandability, reliability,
and maintainability.

12. To accomplish the objectives of software, the major processes required are development
process, management process, and configuration control process.

13. Various processes are used, as a process framework to develop a software project in
the organization. The framework activities comprise of umbrella activities, which are
used across the software process.

14. Some of the umbrella activities include software project tracking, software quality
assurance, reusability management, software configuration management and risk
management.

15. Software product engineering aims at consistently performing a well-defined engineering
process, which integrates all the software engineering activities to develop correct,
effective, efficient, and consistent software.

16. To develop quality software it is essential to use effective software processes. Thus,
processes are assessed to evaluate methods, tools, practices, organizational structure,
and environment, which are used to develop software.

17. A software process model is an abstraction of the process. The purpose of software
process model is to determine the order of stages, which are involved in the development
of the software. It is essential to define process models for each software project.

18. Some of the process models are waterfall model, prototyping model, spiral model, and
fourth generation techniques.

19. The requirements of the software in waterfall model are defined early in software
development life cycle. To develop software, waterfall model uses different stages.
This model is simple to understand and easy to use.

20. In prototyping model, a working representation known as prototype of the software is
developed. It gives the actual feel of the software to the user. Thus, it gives an indication
of how complex the system will be after it is developed.

21. Spiral model was developed to incorporate the project as the major aspect of software
development. This model provides a disciplined framework for software development
that overcomes the deficiencies of other process models.

22. Fourth generation techniques are a collection of software tools used by software
engineers to solve a problem by using a specialised language or a graphic notation so
that users easily understand the problem.

23. To assess the quality of the engineered product or system and to better understand the
models that are created, some measures are used. These measures are collected
throughout the software development life cycle with an intention to improve the software
process on a continuous basis.

24. Once measures are collected they are converted into metrics for use.

1.9 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Software can be defined as a collection of programs, documentation and operating
procedures. Institute of Electrical and Electronic Engineers (IEEE) defines software
as “a collection of computer programs, procedures, rules, and associated
documentation and data”.

Software Process
and Process Models

Self-Instructional Material 29

NOTES

2. 1960s: Software was developed for specific areas and was being marketed and sold
separately from hardware. This marked a deviation from earlier practices of giving
software free as a part of the hardware platform. In addition, hiding of internal details
of an operating system using abstract programming interfaces improved the
productivity of the programmer.

1970s: With the development of structured design, software development models
were introduced. These were based on a more organic, evolutionary approach, deviating
from the waterfall-based methodologies of hardware engineering. Research was done
on quantitative techniques for software design. During this time, researchers began
to focus on software design to address the problems of developing complex software
systems.

3. This class of software is used where the problem solving technique is non-algorithmic
in nature. The solutions of such problems are generally non-agreeable to computation
or straightforward analysis. Instead, these problems require specific problem solving
strategies that include expert system, pattern recognition, and game playing techniques.
In addition, it involves different kinds of searching techniques including the use of
heuristics. The role of artificial intelligence software is to add certain degree of
intelligence into the mechanical hardware to have the desired work done in an agile
manner.

4. Software portability refers to the ease with which software developers can transfer
software from one platform to another, without (or with minimum) changes. In
simple terms, it refers to the ability of software to function properly on different
hardware and software platforms without making any changes in it.

5. IEEE defines software engineering as “the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software;
that is, the application of engineering to software.” In a nutshell, software engineering
can be defined as the technological and managerial discipline concerned with systematic
production and maintenance of software that is developed and modified on time and
within cost estimates.

6. A software engineer is responsible for analysis, design, testing, implementation, and
maintenance of effective and efficient software system. In addition, software engineer
is responsible for maintaining subsystems and external interfaces, subject to time and
budgetary constraints.

7. The process layer is an adhesive that enables rational and timely development of
computer software. Process defines an outline for a set of key process areas that
must be acclaimed for effective delivery of software engineering technology.

8. Software engineering shares common interest with other engineering disciplines. In
the engineering domain, developing a solution to a given problem, whether building a
bridge or making an electronic component, involves a sequence of interconnected
steps. These steps or phases occur in software development as well. Also, since the
prime objective of software engineering is to develop methods for large systems,
which produce high quality software at low cost and in reasonable time, it is essential
to perform software development in phases. This phased development of software is
often referred to as software development life cycle (SDLC) or software life
cycle.

9. There are three constraints that are analyzed during preliminary investigation.

• Technical: This evaluation primarily determines whether technology needed for
proposed system is available or not and if it is available then how can it be integrated
within the organization.

• Time: This evaluation determines the time needed to complete a project.

Software Engineering

30 Self-Instructional Material

NOTES

• Budgetary: This determines whether the investment needed to implement the
system will be recovered at later stages or not.

10. Software project management is concerned with the overall planning and coordination
of a software project from its commencement to its completion. This involves
application of knowledge, skills, tools and techniques to meet the user’s requirements
within the specified time and cost.

11. The process management processes aims at improving software processes so that a
cost effective and a high quality product is developed. The process of comprehending
the existing process, analyzing its properties, determining how to improve it, and then
affecting the improvement is also carried out by PMP.

12. Process framework determines the processes, which are essential for completing a
complex software project. This framework also identifies certain activities, which
are applicable to all software projects, regardless of their type and complexity.

13. A process model also known as software engineering paradigm can be defined as a
strategy, which comprises of processes, methods, tools or steps for developing
software. These models provide a basis for controlling various activities required to
develop and maintain software. In addition, it helps the software development team in
facilitating and understanding the activities involved in the project.

14. In waterfall model the development of software proceeds linearly and sequentially
from requirement analysis to design, coding, testing, integration, implementation, and
maintenance. Therefore, this model is also known as linear sequential model.

15. The prototyping model is best suited when there is an absence of detailed information
regarding input and output requirements in the software. Prototyping model is
developed on the assumption that it is often difficult to know all the requirements at
the beginning of a project. It is usually used when there does not exist a system or in
case of large and complex system where there is no manual process to determine the
requirements.

16. Fourth generation techniques enable software engineers to specify characteristics of
software at a high level and then automatically generate the source code. In addition
to being a process model, fourth generation techniques are a collection of software
tools used by software engineers to solve a problem by using a specialised language
or a graphic notation so that users easily understand the problem.

17. Software measurements can be categorized into direct measures and indirect measures.
Direct measures include software processes like cost and effort applied and product
like lines of code produced, execution speed, and other defects that have been reported.
Indirect measures include products like functionality, quality, complexity, reliability,
maintainability, and much more.

18. A metric is a derived unit of measurement that cannot be directly observed, but is
created by combining or relating two or more measures. IEEE defines metric as “a
quantitative measure of the degree to which a system, component, or process possesses
a given attribute.”

1.10 QUESTIONS AND EXERCISES

I. Fill in the Blanks

1. Based on its applications, software is classified as system software, _____________,
business software, ______________, artificial intelligence software, _____________,
and personal computer software.

Software Process
and Process Models

Self-Instructional Material 31

NOTES

2. There are three layers of software engineering, namely _____________, ____________,
and ____________.

3. ____________________ confirms that software is translated according to the sufficient
accuracy.

II. Multiple Choice Questions

1. Which of the following does not compose software?
(a) Programs (b) Hardware (c) Data (d) Documentation

2. Which of the following is not the characteristic of software?

(a) Availability (b) Maintainability (c) Usability (d) Efficiency
3. Which of the following is not the type of software?

(a) Web-based software (b) System software
(c) Management software (d) Customised COTS

III. State Whether True or False

1. Software is a degradable entity.

2. Functionality refers to the ability of software to perform a required function under
given conditions for a specified period.

3. Tools layer provides computerised and semi-computerised support for process and
method layer.

IV. Descriptive Questions

1. Define software along with its characteristics?
2. Write a short note on the following

Evolution of Software Engineering.

3. The main tasks of software engineer are to analyse, design, test, implement, and maintain
the software. So as to perform all these tasks efficiently software engineer should
possess certain qualities. Explain them.

4. What is a process model? Outline the major steps involved in a spiral model.

1.11 FURTHER READING

1. Software Engineering: A Practitioner’s Approach–Pressman

2. Software Engineering – Ian Sommerville

3. Software Engineering – K. K. Aggarwal and Yogesh Singh

Software Project Planning
and Cost Estimation

Self-Instructional Material 33

NOTES

UNIT 2 SOFTWARE PROJECT PLANNING
AND COST ESTIMATION

Structure
2.0 Introduction
2.1 Unit Objectives
2.2 Project Planning

2.2.1 Project Purpose; 2.2.2 Project Scope;
2.2.3 Project Planning Process; 2.2.4 Project Plan

2.3 Project Scheduling
2.4 Basics of Cost Estimation

2.4.1 Resources for Software Cost Estimation; 2.4.2 Software Product Cost Factors
2.5 Software Cost Estimation Process
2.6 Decomposition Techniques

2.6.1 Problem-based Estimation; 2.6.2 Process-based Estimation
2.7 Cost Estimation Models

2.7.1 Constructive Cost Model; 2.7.2 Software Equation
2.8 Let us Summarize
2.9 Answers to ‘Check Your Progress’
2.10 Questions and Exercises
2.11 Further Reading

2.0 INTRODUCTION

Software development is a complex activity involving people, processes and procedures.
Therefore, an effective management of software project is essential for its success. Software
project management (responsible for project planning) specifies activities necessary to
complete the project. The activities include determining project constraints, checking project
feasibility, defining role and responsibilities of the persons involved in the project, and
much more. One of the crucial aspects of project planning is the estimation of costs, which
includes work to be done, resources, and time required to develop the project. A careful
and accurate estimation of cost is important, as cost overrun may agitate the
customers and lead to cancellation of the project, while, cost underestimate may force a
software team to invest its time without much monetary consideration.

Cost estimation should be done before software development is initiated since it helps the
project manager to know about resources required and the feasibility of the project. Also,
the initial estimate may be used to establish budget for the project or to set a price for the
software to the potential customer. However, estimate must be done repeatedly throughout
the development process, as more information about the project is available in the later
stages of development. This helps in effective usage of resources and time. For example, if
actual expenditure is greater than the estimate, then the project manager may apply additional
resources for the project or modify the work to be carried out.

2.1 UNIT OBJECTIVES
After reading this unit, the reader will understand:

• The need, scope, and purpose of project planning.
• Project planning process.

34 Self-Instructional Material

NOTES

Software Engineering • Project plan.
• Project scheduling.
• Resources required for accurate software cost estimation.
• Factors that influence the cost of developing a software product.
• Software cost estimation process.
• Decomposition techniques, such as problem-based and process-based estimation.
• Cost estimation models like COCOMO and software equation.
• How estimation is carried out in object-oriented projects.

2.2 PROJECT PLANNING

Before starting a software project, it is essential to determine the tasks to be performed and
to properly manage allocation of tasks among individuals involved in software development.
Hence, planning is important as it results in effective software development.

Project planning is an organized and integrated management process, which focuses on
activities required for successful completion of the project. It prevents obstacles that arise
in the project, such as changes in projects or organization’s objectives, non-availability of
resources, and so on. Project planning also helps in better utilisation of resources and
optimal usage of the allotted time for a project. The other objectives of project planning are
listed below:

• Define roles and responsibilities of the project management team members.
• Ensure that project management team works according to business objectives.
• Check feasibility of schedule and user requirements.
• Determine project constraints.

Several individuals help in planning the project. These include senior management and
project management team. Senior management is responsible for employing team members
and providing resources required for the project. Project management team, which
generally includes project managers and developers, is responsible for planning, determining,
and tracking the activities of the project. Table 2.1 lists the tasks performed by individuals
involved in the software project.

Table 2.1 Tasks of Individuals involved in Software Project

Senior Management Project Management Team

Note: In software project, tasks and activities represent the tasks performed during software development.
Hence, both the terms are used interchangeably throughout this chapter.

Approves the project, employ personnel,
and provides resources required for the
project.

Reviews project plan to ensure that it
accomplishes business objectives.

Resolves conflicts among team members.

Considers risks that may affect the project
so that appropriate measures can be taken to
avoid them.

Reviews the project plan and implements procedures
for completing the project.
Manages all project activities.
Prepares budget and resource allocation plans.
Helps in resource distribution, project management,
issue resolution, and so on.
Understands project objectives and finds ways to
accomplish the objectives.
Devotes appropriate time and effort to achieve the
expected results.
Selects methods and tools for the project.

Software Project Planning
and Cost Estimation

Self-Instructional Material 35

NOTES

Project planning comprises of project purpose, project scope, project planning process, and
project plan. This information is essential for effective project planning and to assist project
management team in accomplishing user requirements.

2.2.1 Project Purpose
Software project is carried out to accomplish a specific purpose, which is classified into
two categories, namely, project objectives and business objectives. The commonly followed
project objectives are listed below:
• Meet user requirements: Develop the project according to user requirements after

understanding them.
• Be according to schedule: Complete the project milestones as described in the project

plan on time in order to complete the project according to schedule.
• Be within budget: Manage the overall project cost so that the project is within budget.
• Produce quality deliverables: Ensure that quality is considered for accuracy and

overall performance of the project.

Business objectives ensure that the organizational objectives and requirements are
accomplished in the project. Generally, these objectives are related to business process
improvements, customer satisfaction, and quality improvements. The commonly followed
business objectives are listed below:
• Evaluate processes: Evaluate the business processes and make changes when and

where required as the project progresses.
• Renew policies and processes: Provide flexibility to renew the policies and processes

of the organization in order to perform the tasks effectively.
• Keep the project on schedule: Reduce the downtime (period when no work is done)

factors, such as unavailability of resources during software development.
• Improve software: Use suitable processes in order to develop software that meets

organizational requirements and provide competitive advantage to the organization.

2.2.2 Project Scope
With the help of user requirements, project management team determines the scope of the
project before the project begins. This scope provides a detailed description of functions,
features, constraints, and interfaces of the software that are to be considered. Functions
describe the tasks that the software is expected to perform. Features describe the attributes
required in the software as per the user requirements. Constraints describe the limitations
imposed on software by hardware, memory, and so on. Interfaces describe the interaction
of software components (like modules and functions) with each other. Project scope also
considers the software performance, which in turn depends on its processing capability and
response time required to produce the output.

Once the project scope is determined, it is important to properly understand it in order to
develop software according to user requirements. After this, project cost and duration are
estimated. If the project scope is not determined on time, the project may not be completed
within the specified schedule. This in turn can delay the completion of the project. Project
scope describes the information listed below:

• List of elements included and excluded in the project.
• Description of processes and entities.
• Determination of functions and features required in software according to user

requirements.

Note that the project management team and senior management should communicate with
users to understand their requirements and develop software according to those requirements
and expected functionality.

36 Self-Instructional Material

NOTES

Software Engineering 2.2.3 Project Planning Process
Project planning process involves a set of interrelated activities followed in an orderly
manner to implement user requirements in software and includes the description of a series
of project planning activities and individual(s) responsible for performing these activities.
In addition, the project planning process comprises of the following:

• Objectives and scope of the project.
• Techniques used to perform project planning.
• Effort (in time) of individuals involved in project.
• Project schedule and milestones.
• Resources required for the project.
• Risks associated with the project.

Project planning process comprises of several activities, which are essential for carrying
out a project systematically. These activities refer to the series of tasks, which are performed
over a period of time for developing the software. These activities include estimation of
time, effort and resources required, and risks associated with the project.

Identification of
Project Requirements

Identification of
Risks

Identification of
Cost Estimates

Identification of
Critical Success Factors

Preparation of
Project Charter

Preparation of
Project Plan

Commencement of
Software Project

Figure 2.1 Project Planning Activities

Figure 2.1 shows several activities of project planning, which can be performed both in a
sequence and in a parallel manner. Project planning process consists of various activities
listed below:
• Identification of project requirements: Before starting a project, it is essential to

identify the project requirements as the identification of project requirements helps in
performing the activities in a systematic manner. These requirements comprise of
information, such as project scope, data and functionality required in the software, and
roles of the project management team members.

• Identification of cost estimates: Along with the estimation of effort and time, it is
necessary to estimate the cost that is to be incurred on a project. The cost estimation
includes the cost of hardware, network connections, and the cost required for the
maintenance of hardware components. In addition, cost is estimated for the individuals
involved in the project.

• Identification of risks: Risks are unexpected events that have adverse effect on the
project. Software project involves several risks (like technical risks and business risks)
that affect the project schedule and increase the cost of the project. Identifying risks
before a project begins helps in understanding their probable extent of impact on the
project.

Software Project Planning
and Cost Estimation

Self-Instructional Material 37

NOTES

• Identification of critical success factors: For making a project successful, critical
success factors are followed. Critical success factors refer to the conditions that ensure
greater chances of success of a project. Generally, these factors include support from
management, appropriate budget, appropriate schedule, and skilled software engineers.

• Preparation of project charter: A project charter provides brief description of the
project scope, quality, time, cost, and resource constraints as described during project
planning. It is prepared by the management for approval from the sponsor of the project.

• Preparation of project plan: A project plan provides information about the resources
that are available for the project, individuals involved in the project, and the schedule
according to which the project is to be carried out.

• Commencement of the project: Once the project planning is complete and resources
are assigned to team members, the software project commences.

Figure 2.1 shows the process of project planning. Once the project objectives and business
objectives are determined, the project end date is fixed. Project management team prepares
the project plan and schedule according to the end date of the project. After analysing the
project plan, the project manager communicates the project plan and end date to the senior
management. The progress of the project is reported to the management from time to time.
Similarly, when the project is complete, senior management is informed about it. In case,
there is delay in completing the project, the project plan is re-analyzed and corrective
actions are taken to complete the project. The project is tracked regularly and when the
project plan is modified, the senior management is informed.

2.2.4 Project Plan
As stated earlier, project plan stores the outcome of project planning. It describes the
responsibilities of project management team and the resources required for the project. It
also includes the description of hardware and software (such as compilers and interfaces),
and lists the methods and standards to be used in it. These methods and standards include
algorithms, tools, review techniques, design language, programming language, and testing
techniques.

A project plan helps a project manager to understand, monitor, and control the development
of software project. This plan is used as a means of communication between users and the
project management team. Various advantages associated with project plan are listed below:

• Ensures that software is developed according to user requirements, objectives, and
scope of the project.

• Identifies the role of each project management team member involved in the project.

• Monitors the progress of the project according to the project plan.

• Determines the available resources and the activities to be performed during software
development.

• Provides an overview to management about the costs of the software project, which
are estimated during project planning.

Note that there are differences in the contents of two or more project plans as they differ
depending on the kind of project and user requirements. Project plan is divided into several
sections, which are listed below:

• Introduction: Describes the objectives of the project and provides information about
the constraints that affect the software project.

• Project organization: Describes the responsibilities, which are assigned to the project
management team members for completing the project.

38 Self-Instructional Material

NOTES

Software Engineering • Risk analysis: Describes the risks that can possibly arise during software development
as well as explains how to assess and reduce the effect of risks.

• Resource requirements: Specifies the hardware and software that are required to
carry out the software project. According to these resource requirements, cost estimation
is done.

• Work breakdown: Describes the activities into which the project is divided. It also
describes the milestones and deliverables of the project activities.

• Project schedule: Specifies the dependencies of activities on each other. Based on
this, the time required by the project management team members to complete the project
activities is estimated.

In addition to these sections, there are several plans that may be a part or linked to a project
plan. These plans include quality assurance plan, verification and validation plan,
configuration management plan, maintenance plan, and staffing plan.

(a) Quality Assurance: The quality assurance plan describes the strategies and methods
that are to be followed to accomplish the objectives listed below:

• Ensure that the project is managed, developed, and implemented in an organized way.
• Ensure that project deliverables are of acceptable quality before they are delivered to the

user.

(b) Verification and Validation: Verification and validation plan describes the approach,
resources, and schedule used for system validation.

1.0 General Information
1.1 Purpose
1.2 Scope
1.3 System Overview
1.4 Project References
1.5 Acronyms and Abbreviation
1.6 Points of Contact

1.6.1 Information
1.6.2 Coordination

2.0 Reviews and Walkthroughs
2.1 Schedule
2.2 Procedure

3.0 System Test Plan and Procedures
3.1 System Test Strategy

3.3 Platform System Integration
3.2 Database Integration

4.0 Acceptance Test and Preparation for Delivery
4.1 Procedure

4.3 Installation Procedure
4.2 Acceptance Criteria

Figure 2.2 Verification and Validation Plan

Figure 2.2 shows the verification and validation plan, which comprises of various sections
listed below:

• General information: Provides description of the purpose, scope, system overview,
and project references. Purpose describes the procedure to verify and validate the
components of the system. Scope provides information about the procedures to verify
and validate as they relate to the project. System overview provides information about
the organization responsible for the project and other information, such as system name,
system category, operational status of the system, and system environment. Project
references provide the list of references used for the preparation of the verification and
validation plan. In addition, this section includes acronyms and abbreviations and points

Software Project Planning
and Cost Estimation

Self-Instructional Material 39

NOTES

of contact. Acronyms and abbreviations provide a list of terms used in the document.
Points of contact provide information to users when they require assistance from
organization for problems, such as troubleshooting and so on.

• Reviews and walkthroughs: Provide information about the schedule and procedures.
Schedule describes the end date of milestones of the project. Procedures describe the
tasks associated with reviews and walkthroughs. Each team member reviews the
document for errors and consistency with the project requirements. For walkthroughs,
the project management team checks the project for correctness according to software
requirements specification (SRS).

• System test plan and procedures: Provide information about the system test strategy,
database integration, and platform system integration. System test strategy provides
overview of the components required for integration of the database and ensures that
the application runs on at least two specific platforms. Database integration procedure
describes how database is connected to the graphical user interface (GUI). Platform
system integration procedure is performed on different operating systems to test the
platform.

• Acceptance test and preparation for delivery: Provide information about procedure,
acceptance criteria, and installation procedure. Procedure describes how acceptance
testing is to be performed on the software to verify its usability as required. Acceptance
criteria describes that software will be accepted only if all the components, features,
and functions are tested including the system integration testing. In addition, acceptance
criteria checks whether the software accomplishes user expectations, such as its ability
to operate on several platforms. Installation procedure describes the steps on how to
install the software according to the operating system being used for it.

(c) Configuration Management: The configuration management plan defines the process,
which is used for making changes to the project scope. Generally, configuration management
plan is concerned with redefining the existing objectives of the project and deliverables
(software products that are delivered to the user after completion of a software development
phase).

(d) Maintenance: The maintenance plan specifies the resources and processes required
for making the software operational after its installation. Sometimes, the project management
team (or software development team) does not carry out the task of maintenance once the
software is delivered to the user. In such a case, a separate team known as software
maintenance team performs the task of software maintenance. Before carrying out
maintenance, it is necessary for users to have information about the process required for
using the software efficiently.
Figure 2.3 shows the maintenance plan, which comprises of various sections listed below:

1.0 Introduction and Background

2.0 Implementation Approach
2.1 Budget
2.2 Schedule
2.3 Roles and Responsibilities
2.4 Training

4.0 Migration or Cutover Strategy

5.0 Documentation

6.0 Acceptance

7.0 Implementation and Transition
Acceptance

3.0 User Management

Figure 2.3 Maintenance Plan

40 Self-Instructional Material

NOTES

Software Engineering • Introduction and background: Provide description of software to be maintained and
the services required for it. It also specifies the scope of maintenance activities that are
to be performed once the software is delivered to the user.

• Budget: Specifies the budget required for carrying out software maintenance and
operations activities.

• Roles and responsibilities: Specify the roles and responsibilities of the team members
associated with the software maintenance and operation. It also describes their skills
required to perform maintenance and operations activities. In addition to software
maintenance team, software maintenance comprises of user support, user training and
support staff.

• Performance measures and reporting: Identify the performance measures required
for carrying out software maintenance. In addition, it describes how measures required
for enhancing the performance of services (for the software) are recorded and reported.

• Management approach: Identifies the methodologies that are required for establishing
maintenance priorities of the projects. For this purpose, the management either refers to
the existing methodologies or identifies new methodologies. Management approach also
describes how users are involved in software maintenance and operations activities. In
addition, it describes how users and project management team communicate with each
other.

• Documentation strategies: Provide description of the documentation that is prepared
for user reference. Generally, documentation includes reports, information about problems
occurring in software, error messages, and the system documentation.

• Training: Provides information about training activities.

• Acceptance: Defines a point of agreement between the project management team and
software maintenance team after the completion of implementation and transition activities.
After this, software maintenance begins.

(e) Staffing: The staffing plan describes the number of individuals required for a project.
It includes selecting and assigning tasks to the project management team members. Staffing
plan provides information about appropriate skills required to perform the task to produce
the project deliverables and manage the project. In addition, this plan provides information
of resources, such as tools, equipment, and processes used by the project management
team.

Staff planning is performed by a staff planner, who is responsible for determining the
individuals available for the project. The other responsibilities of a staff planner are listed
below:

• Determines individuals, who can be existing staff, staff on contract, or newly employed
staff. It is important for the staff planner to know the structure of the organization to
determine the availability of staff.

• Determines the skills required to execute the tasks mentioned in the project schedule
and task plan. In case, staff with required skills is not available, staff planner informs
project manager about the requirement.

• Ensures that the required staff with required skills is available at the right time. For this
purpose, the staff planner plans the availability of staff after the project schedule is
fixed. For example, at the initial stage of a project, staff may consist of project manager
and few software engineers, whereas during software development, staff consists of
software designers as well as the software developers.

Software Project Planning
and Cost Estimation

Self-Instructional Material 41

NOTES

1.0 General Information
1.1 Project Name
1.2 Project Manager
1.3 Project Start Date
1.4 Project End Date

2.0 Skills Assessment

3.0 Staffing Profile
3.1 Calendar Time
3.2 Individuals Involved
3.3 Level of commitment

4.0 Organization Chart

Figure 2.4 Staffing Plan

• Defines roles and responsibilities of the project management team members so that they
can communicate and coordinate with each other according to the tasks assigned to
them. Note that the project management team can be further broken down into sub-
team depending on the size and complexity of the project.

Figure 2.4 shows staffing plan which comprises of various sections listed below:

• General information: Provides information, such as name of the project and project
manager who is responsible for the project. In addition, it specifies the start and end
dates of the project.

• Skills assessment: Provides information, which is required for assessment of skills.
This information includes the knowledge, skill, and ability of team members, who are
required to achieve the objectives of the project. In addition, it specifies the number of
team members required for the project.

• Staffing profile: Describes the profile of the staff required for the project. The profile
includes calendar time, individuals involved, and level of commitment. Calendar time
specifies the period of time, such as month or quarter required to complete the project.
Individuals that are involved in the project have specific designations, such as project
manager and the developer. Level of commitment is the utilisation rate of individuals,
such as work performed on full time and part time basis.

• Organization chart: Describes the organization of project management team members.
In addition, it includes information, such as name, designation, and role of each team
member.

2.3 PROJECT SCHEDULING

It is essential to perform project scheduling to effectively manage the tasks of the project.
Project scheduling provides details, such as start date and end date of the project, milestones,
and tasks for the project. In addition, it specifies the resources (such as people, equipment,
and facilities) required to complete the project and the dependencies of tasks of the project
on each another. An appropriate project schedule prepared according to project plan not
only aims to complete the project on time but also helps to avoid the additional cost incurred
when the project is delayed.

There are various factors that delay project schedule. The commonly noticed factors are
listed below:
• Unrealistic deadline: Project schedule is affected when the time allocated for completing

a project is impractical and not according to the effort required for it. Generally, this
situation arises when deadline is established by inexperienced individual(s) or without

Check Your Progress

1. Define project planning.
2. Mention different

considerations described in
project scope.

3. Mention different project
planning process activities.

4. What information is
provided under skills
assessment?

42 Self-Instructional Material

NOTES

Software Engineering the help of project management team. Here, the project management team is constrained
to work according to that deadline. The project is delayed if the deadline is not achieved.

• Changing user requirements: Sometimes, project schedule is affected when user
requirements are changed after the project has started. This affects the project schedule,
and thus more time is consumed both in revision of project plan and implementation of
new user requirements.

• Under-estimation of resources: If the estimation of the resources for the project is
not done according to its requirement, the schedule is affected. This under-estimation
of resources leads to delay in performing tasks of the project.

• Lack of consideration of risks: Risks should be considered during project planning
and scheduling, otherwise it becomes difficult for project management team to prevent
their effect during software development.

• Lack of proper communication among team members: Sometimes, there is no
proper communication among the project management team members to resolve the
problems occurring during software development. This in turn makes it difficult for
project management team to understand and develop the software according to user
requirements and schedule.

• Difficulties of team members: Software project can also be delayed due to unforeseen
difficulties of the team members. For example, some of the team members may require
leave for personal reasons.

• Lack of action by project management team: Sometimes, project management team
does not recognize that the project is getting delayed. Thus they do not take necessary
action to speed up the software development process and complete it on time.

Generally, the task of assigning the end date is done by the project sponsor or the user.
While preparing the project schedule, project manager assists the project sponsor by providing
information about the project scope, deliverables, and resources. In addition, project manager
provides an estimate of the time to be consumed to complete project tasks. Preparing an
accurate project schedule is a difficult task and requires thorough knowledge about the
processes and time consumed to perform them. Once the project schedule is fixed, the
project manager is responsible for monitoring the progress of the project. If there is a need
to revise the project schedule, the project manager communicates with the project
management team members.

2.4 BASICS OF COST ESTIMATION

Cost estimation is the process of approximating the costs involved in the software project.
Cost estimation should be done before software development is initiated since it helps the
project manager to know about resources required and the feasibility of the project.

Accurate software cost estimation is important for the successful completion of a software
project. However, the need and importance of software cost estimation is underestimated
due to the reasons listed below:
• Analysis of the software development process is not considered while estimating cost.
• It is difficult to estimate software cost accurately, as software is intangible and intractable.

There are many parameters (also called factors), such as complexity, time availability, and
reliability, which are considered during cost estimation process. However, software size is
considered as one of the most important parameters for cost estimation.

Cost estimation can be performed during any phase of software development. The accuracy
of cost estimation depends on the availability of software information (requirements, design,
and source code). It is easier to estimate the cost in the later stages, as more information is
available during these stages as compared to the information available in the initial stages of

Check Your Progress

5. Why is project scheduling
essential?

6. Explain unrealistic deadline.

Software Project Planning
and Cost Estimation

Self-Instructional Material 43

NOTES

software development. Figure 2.5 shows accuracy of cost estimation in each phase of
development life cycle.

Feasibility Requirement
Analysis

System
Design

Detailed
Design

Coding and
Testing

Accepted
Software

.25x

.5x

.57x

.8x

x

1.25x

1.5x

2x

4x

Figure 2.5 Accuracy of Cost Estimation

In Figure 2.5, the funnel shaped lines narrowing at the right hand side show how cost
estimates get more accurate as additional software information is available. For example,
cost estimated during system design phase is more accurate than cost estimated during
requirement phase. Similarly, cost estimated during coding and testing phase is more accurate
than it is at design phase. Note that when all the information about project is not known, the
initial estimate may differ from the final estimate by factor of four.

Note: Cost estimation should be done more diligently throughout the life cycle of the
project so that unforeseen delays and risks can be avoided in the future.

2.4.1 Resources for Software Cost Estimation
Various inputs are required to develop software as per user the specifications. These inputs
are in the form of human resources, environmental resources, and reusable software
resources as shown in Figure 2.6. Each resource is specified with four characteristics
namely, description of resources, statement of availability, time when resources are required,
and duration for which they are used.

Project
Human

Resources Environment

Reusable
Software

Part-ExperienceComponents

Full-Experience
Com

pon en ts

New Components

O
TS

C
om

ponents

So
ftw

are Tools

H
ardw

are

N
etwork Resources

Lo
ca

tio
n Skills

Number

Figure 2.6 Project Resources

44 Self-Instructional Material

NOTES

Software Engineering (a) Human Resources: Human resources are one of the most important resources required
for the successful completion of a project. For small projects, individuals are capable of
performing many tasks. However, for large projects, individuals perform only a single task
depending on their specialisation. These individuals can act as analysts, programmers, or
testers. Also, software project team involved in development process can be geographically
spread out across different locations. Hence, it is necessary to specify the location of human
resources.

(b) Environmental Resources: In order to accomplish user requirements in a software
project, different types of hardware and software resources are used. These resources are
incorporated in an environment known as Software Engineering Environment (SEE).
Hardware is needed to support software, which is required to produce desired outputs.
While developing software, developer involved in different phases of software development
may require access to SEE. Hence, it is the responsibility of the project planner to prescribe
the time in which these resources can be used and ensure that these resources are available.
Also, the project planner must specify each hardware element to be used.

(c) Reusable Software Resources: While developing software components, the developers
should emphasise on the concept of reusability. This is because reusing components, ideas,
and process helps the developers to save time and effort when developing a project. Also,
since software projects have rigid time constraints, the reuse of software components can
lead to early completion of the project. Note that software components to be reused are
indexed for easy reference, standardised for ease of use, and validated for system integration.

Generally, four types of reusable software resources, which are commonly used are listed
below:
• Off-the-shelf components: The components to be used in existing projects are acquired

from a third party or from the previously developed software. Similarly, commercial off
the shelf (COTS) components can be purchased from a third party. These components
can be readily used in the current project as they are completely validated.

• Full-experience components: The components (specifications, design, or code) that
have been used in a previous project can be easily used in the current project if the
components of both the systems are similar to each other.

• Partial-experience components: The components that have been used in a previous
project are similar to the components of the current project but require significant
modification. Thus, components in the current project involve risks as they can be
reused only after certain modification.

• New components: The components, which are specially developed for existing software,
are known as new components. These components are developed to cater to the need
of the current project.

2.4.2 Software Product Cost Factors
To achieve reliable cost estimates, several factors that influence the cost of developing a
software product are taken into consideration. These factors are listed below:
• Experience in application domain: In a software project, developer works in an

application domain, which comprises of software and hardware technologies that are
used to develop the project. If the developer is familiar with the programming language,
operating system and hardware used in a project, then the cost of developing the project
will be less. This is because they ‘know’ the application domain and do not have to
undergo training. Note that experience of software developer plays a vital role in
determining the cost of the project.

• Product complexity: Generally, software is categorised into three parts, namely
application programs, utility programs, and system programs. Application programs

Software Project Planning
and Cost Estimation

Self-Instructional Material 45

NOTES

(like Microsoft word, Microsoft excel, and so on) can be defined as a program that
performs specific functions directly for the end user. Utility programs (like compiler,
linker, and loader) can be defined as programs, which perform functions, such as file
copying, sorting, merging, memory dump analysis, and so on. System program can
be defined as a program that implements high-level functionality of an operating system.
The cost of software project increases with the level of complexity. There are three
levels of product complexity namely, organic, semi-detached, and embedded programs,
which correspond to the application programs, utility programs, and system programs
respectively.

• Project size: Size of the project is an important criterion for estimating the cost of a
software project. A large sized project consumes more resources than smaller projects,
hence are more costly. According to an equation given by Boehm, the rate of increase in
required effort grows with the number of lines of code (LOC) at an exponential rate
slightly greater than 1. As effort increases, the cost of software also increases.

• Available time: Time available to develop a software project according to the user
requirements is an important factor to determine the project cost. In some cases, software
projects require more resources and effort if development time is decreased from the
allocated time thus leading to an increase in the cost of the project.

• Programmer ability: Software project cost is also dependent on the ability of the
programmers who are involved in the software development. Efficient software
programmers bring down the cost, whereas inefficient programmers need to be trained,
which in turn increases the cost of the project. Note that, on a large project, the differences
between individual programmers tend to ‘average out’. However, in a small project,
difference between the programmers’ abilities can affect the software project cost
considerably. Also, programmers’ productivity is influenced by the ease of use and
access to the hardware devices, which in-turn influences the cost of a software project.
It is observed that the number of LOC written per day by a programmer is largely
dependent on the programming language used.

• Level of technology: In a software development project, level of technology also
helps in determining the cost of a project. Technology involves programming practices,
hardware and software tools, and other supporting infrastructure that are used during
the software project. Modern practices, such as system analysis and design techniques,
design notations, and technical reviews substantially affect the project cost. Also, software
tools like compiler, debugger, and automated verification tools have a considerable
influence while estimating the cost.

• Required level of reliability: Reliability is generally expressed in terms of accuracy,
robustness, consistency, and completeness of the source code. The cost estimates of
the software product depend on the level of analysis, design, implementation, and
verification effort that must be used to ensure high reliability. A considerable level of
reliability should be established during the planning phase by considering the cost of
software failure. In some cases, these failures may lead to financial losses and
inconvenience to the user. It is observed that there exist five categories of reliability (see
Table 2.2), which are rated against a numeric value called effort multiplier.

Table 2.2 Development Effort Multiplier for Software Reliability

Category Effect of Failure Effort Multiplier

Very Low Slight inconvenience 0.75

Low Losses easily recovered 0.88

Nominal Moderately difficult to recover losses 1.00

High High financial loss 1.15

Very High Risk to human life 1.40

Check Your Progress

7. Define cost estimation.
8. Explain the importance of

human resources for
successful completion of a
software project.

9. How does project size
affect cost of a software
project?

46 Self-Instructional Material

NOTES

Software Engineering
2.5 SOFTWARE COST ESTIMATION PROCESS

To lower the cost of conducting business, identify and monitor cost and schedule risk
factors, and to increase the skills of key staff members, software cost estimation process
is followed. This process is responsible for tracking and refining cost estimate throughout
the project life cycle. This process also helps in developing a clear understanding of the
factors which influence software development costs.

Cost of estimating software varies according to the nature and type of the product to be
developed. For example, the cost of estimating an operating system will be more than the
cost estimated for an application program. Thus, in the software cost estimation process,
it is important to define and understand the software, which is to be estimated.

In order to develop a software project successfully, cost estimation should be well planned,
review should be done at regular intervals, and process should be continually improved and
updated. The basic steps required to estimate cost are shown in Figure 2.7.

Project Objectives and Requirements

Plan Activity (WBS)

Estimate Size

Estimate Cost and Effort

Estimate Schedule

Risk Assessment

Inspect/Approve

Track Estimates

Process Measurement and Improvement

Figure 2.7 Software Cost Estimation Process

(a) Project Objectives and Requirements: In this phase, the objectives and requirements
for the project are identified, which is necessary to estimate cost accurately and accomplish
user requirements. The project objective defines the end product, intermediate steps involved
in delivering the end product, end date of the project, and individuals involved in the project.

This phase also defines the constraints/limitations that affect the project in meeting its
objectives. Constraints may arise due to the factors listed below:

• Start date and completion date of the project.

• Availability and use of appropriate resources.

• Policies and procedures that require explanations regarding their implementation.

Project cost can be accurately estimated once all the requirements are known. However, if
all requirements are not known, then the cost estimate is based only on the known
requirements. For example, if software is developed according to the incremental development
model, then the cost estimation is based on the requirements that have been defined for that
increment.

Software Project Planning
and Cost Estimation

Self-Instructional Material 47

NOTES

(b) Plan Activities: Software development project involves different set of activities, which
helps in developing software according to the user requirements. These activities are
performed in fields of software maintenance, software project management, software quality
assurance, and software configuration management. These activities are arranged in the
work breakdown structure according to their importance.

Work breakdown structure (WBS) is the process of dividing the project into tasks and
ordering them according to the specified sequence. WBS specifies only the tasks that are
performed and not the process by which these tasks are to be completed. This is because
WBS is based on requirements and not the manner in which these tasks are carried out.

(c) Estimating Size: Once the WBS is established, product size is calculated by estimating
the size of its components. Estimating product size is an important step in cost estimation
as most of the cost estimation models usually consider size as the major input factor. Also,
project managers consider product size as a major technical performance indicator or
productivity indicator, which allows them to track a project during software development.

(d) Estimating Cost and Effort: Once the size of the project is known, cost is calculated
by estimating effort, which is expressed in terms of person-month (PM). Various models
(like COCOMO, COCOMO II, expert judgement, top-down, bottom-up, estimation by
analogy, Parkinson’s principal, and price to win) are used to estimate effort. Note that for
cost estimation, more than one model is used, so that cost estimated by one model can be
verified by another model.

(e) Estimating Schedule : Schedule determines the start date and end date of the project.
Schedule estimate is developed either manually or with the help of automated tools. To
develop a schedule estimate manually, a number of steps are followed, which are listed
below:

1. The work breakdown structure is expanded, so that the order in which functional
elements are developed can be determined. This order helps in defining the functions,
which can be developed simultaneously.

2. A schedule for development is derived for each set of functions that can be developed
independently.

3. The schedule for each set of independent functions is derived as the average of the
estimated time required for each phase of software development.

4. The total project schedule estimate is the average of the product development, which
includes documentation and various reviews.

Manual methods are based on past experience of software engineers. One or more software
engineers, who are experts in developing application, develop an estimate for schedule.
However, automated tools (like COSTAR, COOLSOFT) allow the user to customise schedule
in order to observe the impact on cost.

(f) Risk Assessment : Risks are involved in every phase of software development therefore,
risks involved in a software project should be defined and analysed, and the impact of risks
on the project costs should also be determined. Ignoring risks can lead to adverse effects,
such as increased costs in the later stages of software development. In the cost estimation
process, four risk areas are considered, which are listed in Table 2.3.

48 Self-Instructional Material

NOTES

Software Engineering Table 2.3 Risk Resulting from Poor Software Estimates

Risk Area Factor Associated with Risk

Size of the software project Software developers are always optimistic while estimating the size
of the software. This often results in underestimation of software
size, which in turn can lead to cost and schedule overruns.

Development environment and An inadequate or unstable development environment can result in
process stability poor estimate of cost and schedule.

Staff skills Misalignment of skills to tasks can result in inaccurate cost and
schedule estimates. This can also result in poor estimates of project
staffing requirements.

Change in requirements Requirements of a software project can change during any phase of
software development. However, unconstrained change of
requirements results in changing project goals that can result in
customer dissatisfaction, and cost and schedule overruns.

(g) Inspect and Approve: The objective of this phase is to inspect and approve estimates in
order to improve the quality of an estimate and get an approval from top-level management.
The other objectives of this step are listed below:

• Confirm the software architecture and functional WBS.
• Verify the methods used for deriving the size, schedule, and cost estimates.
• Ensure that the assumptions and input data used to develop the estimates are correct.
• Ensure that the estimate is reasonable and accurate for the given input data.
• Confirm and record the official estimates for the project.

Once the inspection is complete and all defects have been removed, project manager,
quality assurance group, and top-level management sign the estimate. Inspection and approval
activities can be formal or informal as required but should be reviewed independently by
the people involved in cost estimation.

(h) Track Estimates: Tracking estimate over a period of time is essential, as it helps in
comparing the current estimate to previous estimates, resolving any discrepancies with
previous estimates, comparing planned cost estimates and actual estimates. This helps in
keeping track of the changes in a software project over a period of time. Tracking also
allows the development of a historical database of estimates, which can be used to adjust
various cost models or to compare past estimates to future estimates.

(i) Process Measurement and Improvement: Metrics should be collected (in each step) to
improve the cost estimation process. For this, two types of process metrics are used
namely, process effective metrics and process cost metrics. The benefit of collecting these
metrics is to specify a reciprocal relation that exists between the accuracy of the estimates
and the cost of developing the estimates.

• Process effective metrics: Keeps track of the effects of cost estimating process. The
objective is to identify elements of the estimation process, which enhance the estimation
process. These metrics also identify those elements which are of little or no use to the
planning and tracking processes of a project. The elements that do not enhance the
accuracy of estimates should be isolated and eliminated.

• Process cost metrics: Provides information about implementation and performance
cost incurred in the estimation process. The objective is to quantify and identify different
ways to increase the cost effectiveness of the process. In these metrics, activities that
cost-effectively enhance the project planning and tracking process remain intact, while
activities that have negligible affect on the project are eliminated.

Check Your Progress

10. Why is software cost
estimation process
needed?

11. Explain the significance of
estimating size of a
software project.

12. Explain the importance of
tracking estimates.

Software Project Planning
and Cost Estimation

Self-Instructional Material 49

NOTES

2.6 DECOMPOSITION TECHNIQUES

Software cost estimation is a form of problem solving and in most cases, the problems to
be solved are too complex to be considered in a single form. Therefore, the problem is
decomposed into components in order to achieve an accurate cost estimate. Two approaches
are mainly used for decomposition namely, problem-based estimation and process-based
estimation. However, before estimating cost, project planner should establish an estimate
of the software size, which is referred to as quantitative outcome of the software project.

Software Sizing: Before estimating cost, it is necessary to estimate the accurate size of
software. This is a cumbersome task as many software are of large size. Therefore, software
is divided into smaller components to estimate size. This is because it is easier to calculate size
of smaller components, as the complexity involved in them is less than the larger components.
These small components are then added to get an overall estimate of software size.

Various approaches can be followed for estimating size. These include direct and indirect
approaches. In direct approach, size can be measured in terms of lines of code (LOC) and
in an indirect approach, size can be measured in terms of functional point (FP). Note that
the accuracy of size estimates depends on many parameters, which are listed below:

• The degree to which the size of the software has been properly estimated.
• The ability to convert size estimate into human effort, calendar time and money.
• The degree to which the ability of a software team is reflected by the software plan.
• The stability of product requirements and environment that supports the development

process.

It has been observed that an estimate of the project’s cost is as good as the estimate of its
size. In estimating cost, size is considered as the first problem faced by the project planner.
This problem is commonly known as software-sizing problem. In order to solve this
problem, various approaches are followed, which are listed below:

• Fuzzy logic sizing: To implement this approach, the planner must identify the application
type and its magnitude on a quantitative scale. The magnitude is then refined within the
original range.

• Function point sizing: This approach is used for measuring functionality delivered by
the software system. Function points are derived with the help of empirical relationship,
which is based on countable measures of software information domain and assessment
of software complexity.

• Standard component sizing: Generally, software comprises of a number of standard
components, which are common to a particular application only. Standard components
can be modules, screens, reports, lines of code, and so on. In cost estimation process,
the number of occurrence of each component is estimated and then the historical data
of the project is used to determine the delivered size of each standard component.

• Change sizing: When an already existing project is modified in order to use it in the
new project, this approach is followed. The number and type of modifications that
should be accomplished in the existing project are estimated.

Note: It is easier to perform size estimation than cost estimation because components costs
cannot be added together (since other costs, such as integration costs are also involved
while developing a system). Therefore, size is used as a key parameter by estimation models.

2.6.1 Problem-based Estimation
Lines of code and functional point are described as a measure from which productivity
metrics can be calculated. During software project estimation, lines of code (LOC) and
function point (FP) are used in two different ways as given below:

50 Self-Instructional Material

NOTES

Software Engineering • As an estimation variable to size each element of the software.
• As baseline metric gathered from the previous projects and used with estimation

variables to develop cost and effort projections.

(a) Line of Code: One of the most commonly used software size metric is line of code,
which is highly dependent on the programming language. LOC can be defined as the number
of delivered lines of code in software excluding the comments and blank lines.

LOC depends on the programming language chosen for the project. For example, in assembly
language, lines of code will be comparatively higher than the lines of code written in any
high-level language (like C++, Java). However, the exact number of lines of code can only
be determined after the project is complete since less information about the project is
available at the early stages of development.

For determining LOC, certain guidelines are followed, which are listed below:

• One line of code is for one logical line of code.
• Lines of code that are delivered as a part of software are included and test drivers, test

stubs, and other support software are excluded.
• Software code written by the software developer is included, while code created by the

application generators is excluded.
• Declarations in the programs are counted as lines of code.
• Comments in the programs are not counted as lines of code.

Using historical data, project planner estimates three values for each size. These values are
optimistic (Sopt), most likely (Sm), and pessimistic (Spess). An expected value (S) can then
be computed by the following equation:

S = (Sopt + 4Sm + Spess)/6 ...(1)

Example of LOC: In this example, software comprises of six functions namely, user
interface, word processing, file storage and retrievals, database management, word
processor, and peripheral control.

To estimate size of each and every function in terms of LOC, developer should determine
size of each function in terms of optimistic, most likely, and pessimistic values using
equation (1). For instance, in Table 2.4, user interface function’s expected size (s) is
calculated as follows:

S = (2200 + 4 × 1800 + 1400)/6 = 1800

In Table 2.4, size of the software in terms of LOC is 12984.

Table 2.4 Estimating Size

Function Pessimistic Most likely Optimistic Expected Size
(Spess) (Sm) (Sopt) (S)

User Interface 1400 1800 2200 1800

Word processing 1800 2500 3100 2483

File storage and retrievals 1700 2200 2500 2167

Database management 2400 3100 4200 3167

Word processor 1200 1600 2300 1650

Peripheral control 1400 1700 2100 1717

Total estimated lines of code 12984

Software Project Planning
and Cost Estimation

Self-Instructional Material 51

NOTES

(b) Function Point Function point metric is used to measure the functionality delivered
by the system. Function point estimates can help in estimating effort required to design,
code and test software, predict the number of errors, and forecast the number of components
used in the system.
Function point is derived using an empirical relationship, which is based on the measure of
software information domain value and software complexity. Software complexity can be
classified in terms of simple, average, and complex levels. Information domain value can
be defined as a combination of all the points listed below:
• Number of external inputs (EI): Users and other applications act as a source of

external inputs and provide distinct application oriented data or information.
• Number of external outputs (EO): Each external output provided by the application

provides information to the user. External outputs refer to reports, screens, error message,
and so on. Individual data items in reports or screens are not counted separately.

• Number of external inquires (EQ): External inquires are defined as online input that
helps to generate immediate response in the form of online output. Here, each distinct
inquiry is counted separately.

• Number of internal logical files (ILF): Logical grouping of data that resides within
the application boundary, such as master file as a part of database, is known as internal
logical files. These files are maintained through external inputs.

• Number of external interface files (EIF): Logical grouping of data that resides external
to the application, such as data files on tape or disk, is known as external interface file.
External interface files provide data, which can be used by the application.

Once all the information regarding information domain value is collected (as listed in Table
2.5), complexity value for each count is determined. Organization using FP method develops
criteria, which helps in determining whether a particular entry is simple, average, or complex.
A weighting factor in terms of numeric value is assigned for each level of complexity.

Table 2.5 Computing Function Points

Information Domain Count Weighting Factor
Value Simple Average Complex

EI × 3 14 16 =

EO × 4 15 17 =

EQ × 3 14 17 =

ILF × 7 10 15 =

EIF × 5 17 10 =

Functional points in software are estimated by the following equation:

FP = count total × [0.65 + 0.01 × Σ (fi)] ...(2)
where,

Count total is the sum of all the FP entries.

fi (i = 1 to 14) are value adjustment factors.

The value adjustment factors are based on the response to 14 questions, which are listed
below:

1. Is reliable backup and recovery required by the system?

2. Is data communication required to transfer the information?
3. Do distributed processing functions exist?

52 Self-Instructional Material

NOTES

Software Engineering 4. Is performance vital?
5. Does the system run under immensely utilised operational environment?
6. Is on-line data entry required by system?
7. Is it possible for the on-line data entry (that requires the input transaction) to be built

over multiple screens or operations?
8. Is updation of internal logical files allowed on-line?
9. Are the inputs, outputs, files, or inquires complex?

10. Is the internal processing complex?
11. Is the code reusable?
12. Does design include conversion and installation?
13. Does system design allow multiple installations in different organizations?
14. Is the application easy to use and does it facilitate changes?

The above-mentioned questions are answered using a scale of 0 to 5 (see Figure 2.8)
where 0 refers to not important and 5 considered as essential. The constant values in
equation (2) and the weighting factors in Table 2.5 are determined based on the information
domain.

Rate each factor on a scale of 0 to 5

No
Influence

Incidental Moderate Average Significant Essential

0 1 2 3 4 5

Figure 2.8 Rating of Value Adjustment Factors

Example of Function Point: To estimate size in terms of function point, first FP count
should be determined, which is calculated by the following equation:

FP count = Count × Weighting factor (Average) ...(3)

For instance, in Table 2.6 FP count for number of user inputs (measurement parameter)
is calculated as follows:

FP count = 22 × 4 = 88

Table 2.6 Computing Function Points

Measurement parameter Count Simple Average Complex FP count

Number of user inputs 22 × 3 24 26 = 88

Number of user outputs 15 × 4 25 27 = 75

Number of user inquiries 26 × 3 24 26 = 104

Number files 26 × 7 10 15 = 60

Number of external interfaces 22 × 5 27 10 = 14

Count Total 341

After determining count for each parameter and calculating count total, 14 other parameters
are considered, which are listed in Table 2.7.

Software Project Planning
and Cost Estimation

Self-Instructional Material 53

NOTES

Table 2.7 Value Adjustment Factors

Factors Value

Backup and recovery 3

Data communications 1

Distributed processing 1

Performance critical 3

Existing operating environment 2

On-line data entry 3

Input transactions over multiple screens 4

Master files updated on-line 2

Information domain value complex 4

Internal processing complex 4

Code design for reuse 3

Conversions/installation in design 2

Multiple installations 4

Application design for change 4

Value adjustment factor 40

To calculate the function point, use equation (1):

FP = 341 × [0.65 + (0.01 × 40)] = 358

Note: FP-based estimation is more complex than LOC.

2.6.2 Process-based Estimation
In software project development, a process is followed to accomplish objectives of the
project. Commonly used technique for estimating the effort in a software project is to base
the estimate on the process, which will be used. For this, the process is decomposed into
smaller set of tasks, such as analysis, design, coding, and so on. Once these tasks are
identified, effort required to accomplish each task is estimated.

In process-based estimation, software functions are derived from project scope and for
each function, a series of activities are performed. These activities are in the form of
customer communication, planning, risk analysis, engineering, and so on. The project
planner then combines the functions and activities together to estimate the effort, which is
required to accomplish each activity for each function. Next, with each process activity,
average labour rates (cost per unit effort) are applied. The labour rate varies from task to
task. For example, top-level management activities are more expensive than the activities
performed by the junior staff in the initial stages of performing the framework activities.

Example for Process Based Estimation: The software considered for process-based
estimation is divided into seven functions. For all the seven functions, a set tasks and
activities are identified as listed in Table 2.8. Once all functions and activities are identified,
effort required to accomplish each software activity for each software function is estimated.
Lastly, effort for each function and activities is calculated.

54 Self-Instructional Material

NOTES

Software Engineering Table 2.8 Process based Estimation

Activity Customer Plann- Risk Engineering Construction Total
communication ing analysis release

Task Analysis Design Code Test

Function 1 0.40 1.50 0.40 4.00 6.30

Function 2 0.65 2.00 0.60 1.00 4.25

Function 3 0.40 3.00 1.00 2.00 6.40

Function 4 0.40 2.00 1.00 2.50 5.90

Function 5 0.40 2.00 0.75 2.50 5.65

Function 6 0.15 1.00 0.50 2.50 4.15

Function 7 0.40 1.00 0.50 1.00 2.90

Total 0.25 0.25 0.25 2.80 12.50 4.75 15.50 36.00

The average labour rate available for this example is Rs 50000 per month, and based on
Table 2.8 estimated effort is 36 person-month. Considering these two factors, the total
estimated project cost is Rs 1800000. Note that if required, labour rate can be linked with
each framework activity or software engineering activity and the labour rate can be computed
independently.

2.7 COST ESTIMATION MODELS
Estimation models use derived formulas to predict effort as a function of LOC or FP. Various
estimation models are used to estimate cost of a software project. In these models, cost of
software project is expressed in terms of effort required to develop the software successfully.
These cost estimation models are broadly classified into two categories, which are listed below:
• Algorithmic models: Estimation in these models is performed with the help of

mathematical equations, which are based on historical data or theory. In order to estimate
cost accurately, various inputs are provided to these algorithmic models. These inputs
include software size and other parameters. To provide accurate cost estimation, most
of the algorithmic cost estimation models are calibrated to the specific software
environment. The various algorithmic models used are COCOMO, COCOMO II, and
software equation.

• Non-algorithmic models: Estimation in these models depends on the prior experience
and domain knowledge of project managers. Note that these models do not use
mathematical equations to estimate cost of software project. The various non-algorithmic
cost estimation models are expert judgement, estimation by analogy, and price to win.

Note: We will discuss algorithmic models only.

2.7.1 Constructive Cost Model
In the early 80’s, Barry Boehm developed a model called COCOMO (COnstructive COst
MOdel) to estimate total effort required to develop a software project. COCOMO model is
commonly used as it is based on the study of already developed software projects. While
estimating total effort for a software project, cost of development, management, and other
support tasks are included. However, cost of secretarial and other staff are excluded. In
this model, size is measured in terms of thousand of delivered lines of code (KDLOC).
In order to estimate effort accurately, COCOMO model divides projects into three categories
listed below:

Check Your Progress

13. Why are decompositions
techniques needed?

14. Mention the parameters on
which the accuracy of size
estimates depends.

15. Explain the term lines of
code.

Software Project Planning
and Cost Estimation

Self-Instructional Material 55

NOTES

• Organic projects: These projects are small in size (not more than 50 KDLOC) and
thus easy to develop. In organic projects, small teams with prior experience work
together to accomplish user requirements, which are less demanding. Most people
involved in these projects have thorough understanding of how the software under
development contributes in achieving the organization objectives. Examples of organic
projects include simple business system, inventory management system, payroll
management system, and library management system.

• Embedded projects: These projects are complex in nature (size is more than 300
KDLOC) and the organizations have less experience in developing such type of projects.
Developers also have to meet stringent user requirements. These software projects are
developed under tight constraints (hardware, software, and people). Examples of
embedded systems include software system used in avionics and military hardware.

• Semi-detached projects: These projects are less complex as the user requirements
are less stringent compared to embedded projects. The size of semi-detached project
is not more than 300 KDLOC. Examples of semi-detached projects include operating
system, compiler design, and database design.

The various advantages and disadvantages associated with COCOMO model are listed in
Table 2.9.

Table 2.9 Advantages and Disadvantages of COCOMO Model

Advantages Disadvantages

Constructive cost model is based on the hierarchy of three models, namely, basic model,
intermediate model, and advance model.

(a) Basic Model: In basic model, only the size of project is considered while calculating
effort. To calculate effort, use the following equation (known as effort equation):

E = A × (size)B ...(5)

where E is the effort in person-months and size is measured in terms of KDLOC. The
values of constants ‘A’ and ‘B’ depend on the type of the software project. In this model,
values of constants (‘A’ and ‘B’) for three different types of projects are listed in Table
2.10.

Table 2.10 Values of Constants for Different Projects

Project Type A B

Organic project 2.4 1.05

Semi-detached project 3.0 1.12

Embedded project 3.6 1.20

Easy to verify the working involved in it.

Cost drivers are useful in effort estimation as they
help in understanding impact of different
parameters involved in cost estimation.

Efficient and good for sensitivity analysis.

Can be easily adjusted according to the
organization needs and environment.

Difficult to accurately estimate size, in the
early phases of the project.
Vulnerable to misclassification of the project
type.

Success depends on calibration of the model
according to the needs of the organization.
This is done using historic data, which is not
always available.
Excludes overhead cost, travel cost and other
incidental cost.

56 Self-Instructional Material

NOTES

Software Engineering For example, if the project is an organic project having a size of 30 KDLOC, then effort is
calculated using equation (5):

E = 2.4 × (30)1.05

E = 85 PM

(b) Intermediate Model: In intermediate model, parameters like software reliability and
software complexity are also considered along with the size, while estimating effort. To
estimate total effort in this model, a number of steps are followed, which are listed below:
1. Calculate an initial estimate of development effort by considering the size in terms of

KDLOC.
2. Identify a set of 15 parameters, which are derived from attributes of the current project.

All these parameters are rated against a numeric value, called multiplying factor. Effort
adjustment factor (EAF) is derived by multiplying all the multiplying factors with each
other.

3. Adjust the estimate of development effort by multiplying the initial estimate calculated
in step 1 with EAF.

To understand the above-mentioned steps properly, let us consider an example. For simplicity
reasons, an organic project whose size is 45 KDLOC is considered. In intermediate model,
the values of constants (A and B) are listed in Table 2.11. To estimate total effort in this
model, a number of steps are followed, which are listed below:
1. An initial estimate is calculated with the help of effort equation (5). This equation

shows the relationship between size and the effort required to develop a software
project. This relationship is given by the following equation:

Ei = A × (size) B ...(6)
where Ei is the estimate of initial effort in person-months and size is measured in
terms of KDLOC. The value of constants ‘A’ and ‘B’ depend on the type of software
project (organic, embedded, and semi-detached). In this model, values of constants
for different types of projects are listed in Table 2.11.

Table 2.11 Values of Constants for Different Projects

Project Type A B

Organic project 3.2 1.05

Semi-detached project 3.0 1.12

Embedded project 2.8 1.20

Using the equation (6) and the value of constant for organic project, initial effort can be
calculated as follows:

Ei = 3.2 × (45)1.05 = 174 PM

1. Fifteen parameters are identified. These parameters are called cost driver attributes,
which are rated as very low, low, nominal, high, very high or extremely high. For
example, in Table 2.12, reliability of a project can be rated according to this rating
scale. In the same Table, the corresponding multiplying factors for reliability are 0.75,
0.88, 1.00, 1.15 and 1.40.

Software Project Planning
and Cost Estimation

Self-Instructional Material 57

NOTES

Table 2.12 Effort Multipliers for Cost Drivers

Cost Description Very Rating Very Extra
Drivers Low Low Nominal High High High

RELY Required software reliability 0.75 0.88 1.00 1.15 1.40 –

DATA Database size – 0.94 1.00 1.08 1.16 –

CPLX Product complexity 0.70 0.85 1.00 1.15 1.30 1.65

TIME Execution time constraint – – 1.00 1.11 1.30 1.66

STOR Main storage constraint – – 1.00 1.06 1.21 1.56

VIRT Virtual machine volatility – 0.87 1.00 1.15 1.30 –

TURN Computer turnaround time – 0.87 1.00 1.07 1.15 –

ACAP Analyst capability 1.46 1.19 1.00 0.86 0.71 –

AEXP Applications experience 1.29 1.13 1.00 0.91 0.82 –

PCAP Programmer capability 1.42 1.17 1.00 0.86 0.70 –

VEXP Virtual machine experience 1.21 1.10 1.00 0.90 – –

LEXP Language experience 1.14 1.07 1.00 0.95 – –

MODP Modern programming practices 1.24 1.10 1.00 0.91 0.82 –

TOOL Software Tools 1.24 1.10 1.00 0.91 0.83 –

SCED Development Schedule 1.23 1.08 1.00 1.04 1.10

Next, the multiplying factors of all cost drivers considered for the project are multiplied with
each other to obtain EAF. For instance, using cost drivers listed in Table 2.13, EAF is calculated
as:

0.8895 (1.15×0.85×0.91×1.00).

Table 2.13 Cost Drivers In a Project

Cost Drivers Rating Multiplying Factor

Reliability High 1.15

Complexity Low 0.85

Application Experience High 0.91

Programmer Capability Nominal 1.00

3. Once EAF is calculated, the effort estimates for a software project is obtained by
multiplying EAF with initial estimate (Ei). To calculate effort use the following equation:

Total effort = EAF × Ei

For this example, the total effort will be 155 PM.

(c) Advance Model: In advance model, effort is calculated as a function of program size
and a set of cost drivers for each phase of software engineering. This model incorporates
all characteristics of the intermediate model and provides procedure for adjusting the phase
wise distribution of the development schedule.

There are four phases in advance COCOMO model namely, requirements planning and
product design (RPD), detailed design (DD), code and unit test (CUT), and integration and
test (IT). In advance model, each cost driver is rated as very low, low, nominal, high, and
very high. For all these ratings, cost drivers are assigned multiplying factors. Multiplying

58 Self-Instructional Material

NOTES

Software Engineering factors for analyst capability (ACAP) cost driver for each phase of advanced model are
listed in Table 2.14. Note that multiplying factors yield better estimates because the cost
driver ratings differ during each phase.

Table 2.14 Multiplying Factors for ACAP in Different Phases

Rating RPD DD CUT IT

Very Low 1.80 1.35 1.35 1.50

Low 0.85 0.85 0.85 1.20

Nominal 1.00 1.00 1.00 1.00

High 0.75 0.90 0.90 0.85

Very High 0.55 0.75 0.75 0.70

For example, software project (of organic project type), with a size of 45 KDLOC and
rating of ACAP cost driver as nominal is considered (That is 1.00). To calculate effort for
code and unit test phase in this example, only ACAP cost drivers are considered. Initial
effort can be calculated by using equation (6):

Ei = 3.2 × (45)1.05 = 174 PM

Using the value of Ei, final estimate of effort can be calculated by using the following
equation:

E = Ei × 1

That is, E = 174 × 1 = 174 PM

2.7.2 Software Equation
In order to estimate effort in a software project, software equation assumes specific
distribution of efforts over the useful life of the project. Software equation is a multivariable
model, which can be derived from data obtained by studying several existing projects. To
calculate effort, use the following equation:

E = [Size × B0.333/P] 3 × (1/t4)

where,

P = productivity parameter. Productivity parameter indicates the maturity of overall process
and management practices. This parameter also indicates the level of programming language
used, skills and experience of software team, and complexity of software application.

E = efforts in person-months or person-years.

t = project duration in months or years.

B = special skills factor. The value of B increases over a period of time as the
importance and need for integration, testing, quality assurance, documentation,
and management increases. For small programs with sizes between 5 KDLOC
and 15 KDLOC, the value of B is 0.16 and for programs with sizes greater
than 70 KDLOC, the value of B is 0.39.

Note that in the above given equation, there are two independent parameters namely, an
estimate of size in KDLOC and project duration in calendar months or years.

Check Your Progress

16. Why are cost estimation
models used?

17. Define non-algorithmic
models.

Software Project Planning
and Cost Estimation

Self-Instructional Material 59

NOTES

2.8 LET US SUMMARIZE

1. Project planning is an organized and integrated management process, which focuses
on activities required for successful completion of the software project.

2. The purpose of the project is to accomplish project objectives and business objectives.
Project objectives include accomplishment of user requirements in software. In addition,
the software should be completed according to schedule, within budget, and incorporate
quality in software. Business objectives include evaluating processes, renewing policies
and processes, keeping the project on schedule, and improving software.

3. Project planning process involves a set of interrelated activities followed in an orderly
manner to implement user requirements in software and includes the description of a
series of project planning activities and individual(s) responsible for performing these
activities.

4. Project plan stores the outcomes of a project planning. It includes various plans, such
as quality assurance plan, verification and validation plan, configuration management
plan, maintenance plan, and staffing plan.

5. Project scheduling is concerned with determining the time limit required to complete
the project. An appropriate project schedule aims to complete the project on time, and
also helps in avoiding additional cost that is incurred when software is not developed
on time.

6. Cost estimation is the process of approximating the costs involved in the software
project. Cost estimation should be done before software development is initiated since
it helps the project manager to know about resources required and the feasibility of the
project.

7. Various inputs are required to develop software as per user specifications. These inputs
are in the form of human resources, environmental resources, and reusable software
resources.

8. Software cost estimation process is followed to lower the cost of conducting business,
identify and monitor cost and schedule risk factors, and increase the skills of key staff
members. In order to develop software project successfully, cost estimation should be
well planned, reviews should be done at regular intervals, and process should be
continually improved and updated.

9. The steps required to accomplish software estimation are – project objectives and
requirements, plan activities, estimate size, estimate cost and effort, estimate schedule,
risk assessment, inspect and approve, tracking estimates, and process measurement
and improvement.

10. Software cost estimation is a form of problem solving and in most cases the problems
to be solved are too complex to be considered in a single form. Therefore, the problem
is decomposed into components in order to achieve an accurate cost estimate. Two
approaches are mainly used for decomposition namely, problem-based estimation and
process based estimation.

11. One of the most commonly used software size metric is line of code, which is highly
dependent on the programming language. LOC can be defined as the number of delivered
lines of code in software excluding the comments and blank lines.

12. Function point metric is used to measure the functionality delivered by the system.
Function point estimates can help in estimating effort required to design, code and test

60 Self-Instructional Material

NOTES

Software Engineering software, predict the number of errors, and forecast the number of components used
in the system.

13. In software project development, a process is followed to accomplish objectives of the
project. Commonly used technique for estimating the effort in a software project is to
base the estimate on the process, which will be used. For this, the process is decomposed
into smaller set of tasks, such as analysis, design, coding, and so on.

14. Estimation models use derived formulas to predict effort as a function of LOC or FP.
Various estimation models are used to estimate cost of a software project. In these
models, cost of software project is expressed in terms of effort required to develop the
software successfully.

15. In the early 80’s, Barry Boehm developed a model called COCOMO to estimate total
effort required to develop a software project. COCOMO model is commonly used as it
is based on the study of already developed software projects. To estimate effort
accurately, COCOMO model divide projects into three categories, namely organic
projects, embedded projects, and semi-detached projects.

16. In order to estimate effort in a software project, software equation assumes specific
distribution of efforts over the useful life of the project.

2.9 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Before starting a software project, it is essential to determine the tasks to be performed
and to properly manage allocation of tasks among individuals involved in software
development. Project planning is an organized and integrated management process,
which focuses on activities required for successful completion of the project.

2. Project scope provides a detailed description of functions, features, constraints, and
interfaces of the software that are to be considered. Functions describe the tasks
that the software is expected to perform. Features describe the attributes required in
the software as per the user requirements. Constraints describe the limitations imposed
on software by hardware, memory, and so on. Interfaces describe the interaction of
software components (like modules and functions) with each other.

3. Project planning process comprises of several activities, which are essential for
carrying out a project systematically. These activities refer to the series of tasks,
which are performed over a period of time for developing the software. These activities
include estimation of time, effort and resources required, and risks associated with
the project.

4. Skills assessment provides information, which is required for assessment of skills.
This information includes the knowledge, skill, and ability of team members, who are
required to achieve the objectives of the project. In addition, it specifies the number
of team members required for the project.

5. It is essential to perform project scheduling to effectively manage the tasks of the
project. Project scheduling provides details, such as start date and end date of the
project, milestones, and tasks for the project. In addition, it specifies the resources
(such as people, equipment, and facilities) required to complete the project and the
dependencies of tasks of the project on each another.

6. Unrealistic deadline refers to the scenario when the time allocated for completing a
project is impractical and not according to the effort required for it. Generally, this
situation arises when deadline is established by inexperienced individual(s) or without
the help of project management team.

Software Project Planning
and Cost Estimation

Self-Instructional Material 61

NOTES

7. Cost estimation is the process of approximating the costs involved in the software
project. Cost estimation should be done before software development is initiated
since it helps the project manager to know about resources required and the feasibility
of the project.

8. Human resources are one of the most important resources required for the successful
completion of a project. For small projects, individuals are capable of performing
many tasks. However, for large projects, individuals perform only a single task
depending on their specialization.

9. Size of the project is an important criterion for estimating the cost of a software
project. A large sized project consumes more resources than smaller projects, hence
are more costly. According to an equation given by Boehm, the rate of increase in
required effort grows with the number of lines of code (LOC) at an exponential rate
slightly greater than 1. As effort increases, the cost of software also increases.

10. To lower the cost of conducting business, identify and monitor cost and schedule
risk factors, and to increase the skills of key staff members, software cost estimation
process is followed. This process is responsible for tracking and refining cost estimate
throughout the project life cycle. This process also helps in developing a clear
understanding of the factors which influence software development costs.

11. Product size is calculated by estimating the size of its components. Estimating product
size is an important step in cost estimation as most of the cost estimation models
usually consider size as the major input factor. Also, project managers consider product
size as a major technical performance indicator or productivity indicator, which allows
them to track a project during software development.

12. Tracking estimates over a period of time is essential, as it helps in comparing the
current estimate to previous estimates, resolving any discrepancies with previous
estimates, comparing planned cost estimates and actual estimates. This helps in keeping
track of the changes in a software project over a period of time. Tracking also allows
the development of a historical database of estimates, which can be used to adjust
various cost models or to compare past estimates to future estimates.

13. Software cost estimation is a form of problem solving and in most cases, the problems
to be solved are too complex to be considered in a single form. Therefore, there
arises need for decompositions techniques so that the problem can be decomposed
into components in order to achieve an accurate cost estimate.

14. The accuracy of size estimates depends on following parameters:

• The degree to which the size of the software has been properly estimated.
• The ability to convert size estimate into human effort, calendar time and money.
• The degree to which the ability of a software team is reflected by the software

plan.
• The stability of product requirements and environment that supports the development

process.

15. Lines of code (LOC) can be defined as the number of delivered lines of code in
software excluding the comments and blank lines. LOC depends on the programming
language chosen for the project. For example, in assembly language, lines of code
will be comparatively higher than the lines of code written in any high-level language
(like C++, Java).

16. Estimation models use derived formulas to predict effort as a function of LOC or FP.
Various estimation models are used to estimate cost of a software project. In these

62 Self-Instructional Material

NOTES

Software Engineering models, cost of software project is expressed in terms of effort required to develop
the software successfully.

17. In non-algorithmic models, estimation depends on the prior experience and domain
knowledge of project managers. Note that these models do not use mathematical
equations to estimate cost of software project.

2.10 QUESTIONS AND EXERCISES

I. Fill in the Blanks

1. The individuals included in project planning are ______________ and ______________.

2. _______________ is the process of searching, evaluating, and establishing work
relationship with the personnel required for the software project.

3. _____________ describe the steps, which are followed to estimate the initial software
life cycle cost.

4. The various resources used in software development are _____________, environmental
resources, and ______________.

II. Multiple Choice Questions

1. Which one of the following business objectives ensure that the organizational objectives
and requirements are accomplished in the project?
(a) Renew policies and processes (b) Be according to schedule
(c) Meet user requirements (d) None of the above

2. Which of the following is not included in project plan?
(a) Quality assurance plan (b) Verification and validation plan
(c) Configuration management plan (d) Test plan

3. Software product cost factors, include:
(a) Product complexity (b) Available time
(c) Level of technology (d) All the above

4. Which one of the following is not the category of the COCOMO model?
(a) Organic projects (b) Product complexity
(c) Semi-detached projects (d) Embedded projects

III. State Whether True or False

1. The purpose of project scheduling is to make the schedule of project management
team members.

2. Software project is carried out to accomplish a specific purpose.

3. Software cost estimation does not enhance the skill level of staff members in an
organization.

4. Software equation is a single variable cost estimation model.

IV. Descriptive Questions

1. Write short notes on the following:
(a) Maintenance plan
(b) Verification and validation plan
(c) Software equation

Software Project Planning
and Cost Estimation

Self-Instructional Material 63

NOTES

2. COCOMO model is based on the hierarchy of three models, namely basic model,
intermediate model, and advance model. Explain them.

2.11 FURTHER READING

1. Software Engineering: A Practitioner’s Approach – Roger Pressman

2. Software Engineering – Ian Sommerville

System Analysis

Self-Instructional Material 65

NOTES

3.0 INTRODUCTION

In the software development process, requirements phase is the first software engineering
activity, which translates the ideas or views into a requirements document. This phase is
user-dominated phase. Defining and documenting the user requirements in a concise and
unambiguous manner is the first major step to achieve a high quality product.

Requirements phase encompasses a set of tasks, which helps to specify the impact of the
software on the organisation, customers’ needs, and how users will interact with the
developed software. The requirements are the basis of system design. If requirements are
not correct the end product will also contain errors. Note that requirement activity like all
other software engineering activities should be adapted to the needs of the process, the
project, the product, and the people involved in the activity. Also, the requirements should
be specified at different levels of detail. This is because requirements are meant for (such
as users, managers, system engineers, and so on). For example, managers may be interested
in knowing how the system is implemented rather than knowing the detailed features of the
system. Similarly, end-users are interested in knowing whether the specified requirements
meet their desired needs or not.

3.1 UNIT OBJECTIVES

After reading this unit, the reader will understand:
• What is Software Requirement?
• Feasibility study, which includes technical, operational, and economic feasibility.

UNIT 3 SYSTEM ANALYSIS
Structure
3.0 Introduction
3.1 Unit Objectives
3.2 What is Software Requirement?

3.2.1 Guidelines for Expressing Requirements; 3.2.2 Types of Requirements
3.2.3 Requirements Engineering Process

3.3 Feasibility Study
3.3.1 Types of Feasibility; 3.3.2 Feasibility Study Process

3.4 Requirements Elicitation
3.4.1 Elicitation Techniques

3.5 Requirements Analysis
3.5.1 Structured Analysis; 3.5.2 Object-oriented Modelling; 3.5.3 Other Approaches

3.6 Requirements Specification
3.6.1 Structure of SRS

3.7 Requirements Validation
3.7.1 Requirement Review; 3.7.2 Other Requirement Validation Techniques

3.8 Requirements Management
3.8.1 Requirements Management Process; 3.8.2 Requirements Change Management

3.9 Case Study: Student Admission and Examination System
3.9.1 Problem Statement; 3.9.2 Data Flow Diagrams
3.9.3 Entity Relationship Diagram; 3.9.4 Software Requirements Specification Document

3.10 Data Dictionary
3.11 Let us Summarize
3.12 Answers to ‘Check Your Progress’
3.13 Questions and Exercises
3.14 Further Reading

Software Engineering

66 Self-Instructional Material

NOTES

• Requirements elicitation, which is a process of collecting information about software
requirements from different individuals.

• How requirements analysis helps to understand, interpret, classify, and organize the
software requirements.

• Requirements document that lays a foundation for software engineering activities and is
created when entire requirements are elicited and analyzed.

• Requirements validation phase where work products are examined for consistency,
omissions, and ambiguity.

• Requirements management phase which can be defined as a process of eliciting,
documenting, organizing and controlling changes to the requirements.

3.2 WHAT IS SOFTWARE REQUIREMENT?

Requirement is a condition or a capability possessed by software or system component in
order to solve a real world problem. The problems can be to automate a part of a system,
to correct shortcomings of an existing system, to control a device, and so on. IEEE defines
requirement as “(1) A condition or capability needed by a user to solve a problem or
achieve an objective. (2) A condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard, specification, or other formally
imposed documents. (3) A documented representation of a condition or capability as in (1)
or (2)”.

Requirements describe how a system should act, appear, or perform. For this, when users
request for software, they possess an approximation of what the new system should be
capable of doing. Requirements differ from one user to another user and from one business
process to another business process.

Note: Information about requirements is stored in a database, which helps software
development team to understand user requirements and develop software according to those
requirements.

3.2.1 Guidelines for Expressing Requirements
The purpose of the requirements document is to provide a basis for the mutual understanding
between users and designers of the initial definition of the software development life cycle
(SDLC), including the requirements, operating environment, and development plan.

The requirements document should include, in the overview, the proposed methods and
procedures, a summary of improvements, a summary of impacts, security, privacy, and internal
control considerations, cost considerations and alternatives. The requirements section should
state the functions required of the software in quantitative and qualitative terms, and how
these functions will satisfy the performance objectives. The requirements document should
also specify the performance requirements, such as accuracy, validation, timing, and flexibility.
Inputs and outputs need to be explained, as well as data characteristics. Finally, the requirements
document needs to describe the operating environment and provide, or make reference to, a
development plan.

There is no standard method to express and document the requirements. Requirements can
be stated efficiently by the experience of knowledgeable individuals, observing past
requirements, and by following guidelines. Guidelines act as an efficient method of expressing
requirements, which also provide a basis for software development, system testing, and
user satisfaction. The guidelines that are commonly followed to document requirements
are listed below:

• Sentences and paragraphs should be short and written in active voice. Also, proper
grammar, spelling, and punctuation should be used.

System Analysis

Self-Instructional Material 67

NOTES

• Conjunctions, such as ‘and’ and ‘or’ should be avoided as they indicate the combination
of several requirements in one requirement.

• Each requirement should be stated only once so that it does not create redundancy in the
requirements specification document.

3.2.2 Types of Requirements
Requirements help to understand the behaviour of a system, which is described by various
tasks of the system. For example, some of the tasks of a system are to provide response to
input values, determine the state of data objects, and so on. Note that requirements are
considered prior to the development of the software. The requirements, which are commonly
considered, are classified into three categories, namely, functional requirements, non-
functional requirements, and domain requirements.

(a) Functional Requirements : The functional
requirements (also known as behavioural
requirements) describe the functionality or
services that software should provide. For this,
functional requirements describe the interaction
of software with its environment and specify
the inputs, outputs, external interfaces, and the
functions that should not be included in the
software. Also, the services provided by
functional requirements specify the procedure
by which the software should react to particular
inputs or behave in particular situations. IEEE
defines function requirements as “a function
that a system or component must be able to
perform.”

To understand functional requirements
properly, let us consider an example of an online banking system, which is listed below:

• The user of the bank should be able to search the desired services from the available
services.

• There should be appropriate documents for users to read. This implies that when a user
wants to open an account in the bank, the forms must be available so that the user can
open an account.

• After registration, the user should be provided with a unique acknowledgement number
so that the user can later be given an account number.

The above-mentioned functional requirements describe the specific services provided by
the online banking system. These requirements indicate user requirements and specify that
functional requirements may be described at different levels of detail in online banking
system. With the help of these functional requirements, users can easily view, search, and
download registration forms and other information about the bank. On the other hand, if
requirements are not stated properly, then they are misinterpreted by the software engineers
and user requirements are not met.
The functional requirements should be complete and consistent. Completeness implies
that all the user requirements are defined. Consistency implies that all requirements are
specified clearly without any contradictory definition. Generally, it is observed that
completeness and consistency cannot be achieved in large software or in a complex system
due to the errors that arise while defining the functional requirements of these systems.
The different needs of stakeholders also prevent in achieving completeness and consistency.
Due to these reasons, requirements may not be obvious when they are first specified and
may further lead to inconsistencies in the requirements specification.

Figure 3.1 Types of Requirements

Non-Functional
Requirements

Domain
Requirements

Types of
Requirements

Functional
Requirements

Software Engineering

68 Self-Instructional Material

NOTES

(b) Non-functional Requirements : The non-functional requirements (also known as
quality requirements) relate to system attributes, such as reliability and response time.
Non-functional requirements arise due to user requirements, budget constraints,
organizational policies, and so on. These requirements are not related directly to any particular
function provided by the system.

Non-functional requirements should be accomplished in software to make it perform
efficiently. For example, if an aeroplane is unable to fulfil reliability requirements, it is not
approved for safe operation. Similarly, if a real time control system is ineffective in
accomplishing non-functional requirements, the control functions cannot operate correctly.

Delivery
Implementation
Standards

Organizational
Requirements

Non-Functional
Requirements

External
Requirements

Interoperability
Ethical
Legislative

Product
Requirements

Efficiency
Reliability
Portability
Usability

Figure 3.2 Types of Non-functional Requirements

Different types of non-functional requirements are shown in Figure 3.2. The description of
these requirements are listed below:

• Product requirements: These requirements specify how software product performs.
Product requirements comprise of the following:

Efficiency requirements: Describe the extent to which software makes optimal
use of resources, the speed with which system executes, and the memory it consumes
for its operation. For example, system should be able to operate at least three times
faster than the existing system.

Reliability requirements: Describe the acceptable failure rate of the software. For
example, software should be able to operate even if a hazard occurs.

Portability requirements: Describe the ease with which software can be transferred
from one platform to another. For example, it should be easy to port software to
different operating system without the need to redesign the entire software.

Usability requirements: Describe the ease with which users are able to operate the
software. For example, software should be able to provide access to functionality
with fewer keystrokes and mouse clicks.

• Organizational requirements: These requirements are derived from the policies and
procedures of an organization. Organizational requirements comprise of the following:

Delivery requirements: Specify when software and its documentation are to be
delivered to the user.

System Analysis

Self-Instructional Material 69

NOTES

Implementation requirements: Describe requirements, such as programming
language and design method.

Standards requirements: Describe the process standards to be used during software
development. For example, software should be developed using standards specified
by ISO (International Organization for Standardization) and IEEE standards.

• External requirements: These requirements include all the requirements that affect the
software or its development process externally. External requirements comprise of the
following:

Interoperability requirements: Define the way in which different computer-based
systems interact with each other in one or more organizations.

Ethical requirements: Specify the rules and regulations of the software so that
they are acceptable to users.

Legislative requirements: Ensure that software operates within the legal
jurisdiction. For example, pirated software should not be sold.

Non-functional requirements are difficult to verify. Hence, it is essential to write non-
functional requirements quantitatively so that they can be tested. For this, non-functional
requirements metrics are used. These metrics are listed in Table 3.1.

Table 3.1 Metrics for Non-functional Requirements

Features Measures

Speed Processed transaction/second
User/event response time
Screen refresh rate

Size Amount of memory (KB)
Number of RAM chips

Ease of use Training time
Number of help windows

Reliability Mean time to failure (MTTF)
Portability of unavailability
Rate of failure occurrence

Robustness Time to restart after failure

Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target-dependent statements
Number of target systems

(c) Domain Requirements: Requirements derived from the application domain of a system,
instead from the needs of the users are known as domain requirements. These
requirements may be new functional requirements or specify a method to perform some
particular computations. In addition, these requirements include any constraint that may be
present in existing functional requirements. As domain requirements reflect fundamentals
of the application domain, it is important to understand these requirements. Also, if these
requirements are not fulfilled, it may be difficult to make the system work as desired.

A system can include a number of domain requirements. For example, a system may
comprise of design constraint that describes the user interface, which is capable of accessing
all the databases used in a system. It is important for a development team to create databases
and interface design as per established standards. Similarly, the requirements requested by
the user, such as copyright restrictions and security mechanism for the files and documents
used in the system are also domain requirements.

Software Engineering

70 Self-Instructional Material

NOTES

When domain requirements are not expressed clearly, it can result in various problems,
such as:

• Problem of understandability: When domain requirements are specified in the language
of application domain (such as mathematical expressions), it becomes difficult for
software engineers to understand these requirements.

• Problem of implicitness: When domain experts understand the domain requirements
but do not express these requirements clearly, it may create a problem (due to incomplete
information) for the development team to understand and implement the requirements in
the system.

3.2.3 Requirements Engineering Process
The requirements engineering (RE) process is a series of activities that are performed in
requirements phase in order to express requirements in software requirements specification
(SRS) document. This process focuses on understanding the requirement and its type so
that an appropriate technique is determined to carry out the requirements engineering process.
The new software developed after collecting requirements either replaces the existing
software or enhances its features and functionality. For example, the payment mode of
existing software can be changed from payment through hand-written cheques to electronic
payment of bills.

SRS
Requirements

Analysis & Modelling

Requirements
Specification

Requirements
Management Requirements

Elicitation

Requirements
Verification Feasibility Study

Feasibility Report

User

Figure 3.3 Requirements Engineering Process

In Figure 3.3, a requirements engineering process is shown, which comprises of various
steps. These steps include feasibility study, requirements elicitation, requirements analysis,
requirements specification, requirements validation, and requirements management.

Requirements engineering process begins with a feasibility study of the requirements. Then,
requirements elicitation is performed, which focuses on gathering user requirements. After
the requirements are gathered, analysis is performed, which further leads to requirements
specification. The output of this is stored in the form of software requirements specification
document. Next, the requirements are checked for their completeness and correctness in
requirements validation. Lastly, to understand and control changes to system requirements,
requirements management is performed.

Check Your Progress

1. Name the three main
categories of requirements.

2. Define requirement
engineering process.

System Analysis

Self-Instructional Material 71

NOTES

3.3 FEASIBILITY STUDY

Feasibility is defined as the practical extent to which a project can be performed successfully.
To evaluate feasibility, a feasibility study is performed, which determines whether the
solution considered to accomplish the requirements is practically workable in the software
or not. For this, it considers information, such as resource availability, cost estimates for
software development, benefits of software to organization after it is developed, and cost
to be incurred on its maintenance. The objective of feasibility study is to establish the
reasons for developing software that is acceptable to users, adaptable to change, and
conformable to established standards. Various other objectives of feasibility study are listed
below:

• Analyze whether the software will meet organizational requirements or not.

• Determine whether the software can be implemented using current technology and
within the specified budget and schedule or not.

• Determine whether the software can be integrated with other existing software or not.

3.3.1 Types of Feasibility
Various types of feasibility (see Figure 3.4) that are commonly considered include technical
feasibility, operational feasibility, and economic feasibility.

Figure 3.4 Types of Feasibility

(a) Technical Feasibility: Technical feasibility assesses the current resources (such as
hardware and software) and technology, which are required to accomplish user requirements
in the software within the allocated time and budget. For this, software development team
ascertains whether the current resources and technology can be upgraded or added in the
software to accomplish specified user requirements. Technical feasibility performs the
tasks listed below:

• Analyzes the technical skills and capabilities of software development team members.

• Determines whether the relevant technology is stable and established or not.

• Ascertains that the technology chosen for software development has large number of
users so that they can be consulted when problems arise or improvements are required.

Software Engineering

72 Self-Instructional Material

NOTES

(b) Operational Feasibility: Operational feasibility assesses the extent to which the required
software performs series of steps to solve business problems and user requirements. This
feasibility is dependent on human resources (software development team) and involves
visualizing whether or not the software will operate after it is developed and be operated
once it is installed. In addition, operational feasibility performs the tasks listed below:

• Determines whether the problems proposed in user requirements are of high priority or
not.

• Determines whether the solution suggested by software development team is acceptable
or not.

• Analyzes whether users will adapt to new software or not.
• Determines whether the organization is satisfied by the alternative solutions proposed by

software development team or not.

(c) Economic Feasibility: Economic feasibility determines whether the required software
is capable of generating financial gains for an organization or not. It involves the cost
incurred on software development team, estimated cost of hardware and software, cost of
performing feasibility study, and so on. For this, it is essential to consider expenses made
on purchases (such as hardware purchase) and activities required to carry out software
development. In addition, it is necessary to consider the benefits that can be achieved by
developing the software.

Software is said to be economically feasible if it focuses on the issues listed below:
• Cost incurred on software development produces long-term gains for an organization.
• Cost required to conduct full software investigation (such as requirements elicitation

and requirements analysis).
• Cost of hardware, software, development team, and training.

Note: As economic feasibility assesses cost and benefits of the software, cost-benefit analysis
is performed for it. Economic feasibility uses several methods to perform cost-benefit
analysis, such as payback analysis, return on investment (ROI), and present value analysis.

3.3.2 Feasibility Study Process
Feasibility study comprises of various steps, which are listed below:

1. Information assessment: Identifies information about whether the system helps in
achieving the objectives of the organisation. In addition it verifies that the system can
be implemented using new technology and within the budget. It also verifies whether
the system can be integrated with the existing system

2. Information collection: Specifies the sources from where information about software
can be obtained. Generally, these sources include users (who will operate the software),
organization (where the software will be used), and software development team (who
understands user requirements and knows how to fulfil them in software).

3. Report writing: Uses a feasibility report, which is the conclusion of the feasibility by
the software development team. It includes the recommendation of whether the software
development should continue or not. This report may also include information about
changes in software scope, budget, schedule, and suggestion of any requirements in
the system.

Figure 3.5 shows the feasibility study plan, which comprises of the various sections listed
below:

System Analysis

Self-Instructional Material 73

NOTES
1.0 General Information

1.1 Purpose
1.2 Scope
1.3 System Overview
1.4 Project References
1.5 Acronyms and Abbreviations
1.6 Points of Contacts
 1.6.1 Information
 1.6.2 Co-ordination

2.0 Management Summary
2.1 Environment
 2.1.1 Organizations Involved
 2.1.2 Input/Output
 2.1.3 Processing
 2.1.4 Security
 2.1.5 System Interaction
 2.1.6 Physical Environment
2.2 Current Functional Procedures
2.3 Functional Objectives
2.4 Performance Objectives
2.5 Assumptions and Constraints
2.6 Methodology
2.7 Evaluation Criteria
2.8 Recommendations

3.0 Proposed System
3.1 Description of Proposed System
3.2 Improvements
3.3 Time and Resource Costs
3.4 Impacts
 3.4.1 Equipment Impacts
 3.4.2 Software Impacts
 3.4.3 Organizational Impacts
 3.4.4 Operational Impacts
 3.4.5 Developmental Impacts
 3.4.6 Site or Facility Impacts
 3.4.7 Security and Privacy Impacts
3.5 Rationale for Recommendations

4.1 Description
4.0 Alternative System

Figure 3.5 Feasibility Study Plan

• General information: Describes the purpose and scope of feasibility study. It also
describes system overview, acronyms and abbreviations, and points of contact to be
used. System overview provides description about the name of organization responsible
for software development, system name or title, system category, operational status,
and so on. Project references provide a list for the references used to prepare this
document, such as documents relating to the project or previously developed documents
that are related to the project. Acronyms and abbreviations provide a list of the terms
that are used in this document along with their meanings. Points of contact provide a
list of points of organizational contact with users for information and coordination. For
example, users require assistance to solve problems (such as troubleshooting) and collect
information, such as contact number, E-mail address, and so on.

• Management summary: Provides the information listed below:

Environment: Identifies the individuals responsible for software development. It
provides information about input and output requirements, processing requirements
of software, and the interaction of software with other software. In addition, it also
identifies system security requirements and system’s processing requirements.

Software Engineering

74 Self-Instructional Material

NOTES

Current functional procedures: Describes the current functional procedures of
an existing system, whether automated or manual. It also includes the data flow of
current system and the number of team members required to operate and maintain
the software.
Functional objective: Provides information about functions of the system, such as
new services, increased capacity, and so on.
Performance objective: Provides information about performance objectives, such
as reduced staff and equipment cost, increased processing speed of software, and
improved controls.
Assumptions and constraint: Provides information about assumptions and
constraints, such as operational life of the proposed software, financial constraints,
changing hardware, software and operating environment, and availability of information
and sources.
Methodology: Describes the methods that are applied to evaluate the proposed
software in order to reach a feasible alternative. These methods include survey,
modelling, benchmarking, and so on.
Evaluation criteria: Identifies the criteria, such as cost, priority, development time,
and ease of system use. The criteria are applicable for the development process to
determine the most suitable system option.

Recommendation: Describes a recommendation for the proposed system. This
includes the delays and acceptable risks.

• Proposed software: Describes the overall concept of the system as well as the procedure
to be used to meet user requirements. In addition, it provides information about
improvements, time and resource costs, and impacts. Improvements are performed to
enhance functionality and performance of existing software. Time and resource costs
include the costs associated with software development from its requirement to its
maintenance and staff training. Impacts describe the possibility of future happenings
and include various types of impacts, which are listed below:

Equipment impacts: Determine new equipment requirements and changes to be
made in the currently available equipment requirements.
Software impacts: Specify any additions or modifications required in the existing
software and supporting software to adapt to the proposed software.
Organizational impacts: Describe any changes in organization, staff, and skills
requirement.
Operational impacts: Describe effects on operations, such as user operating
procedures, data processing, data entry procedures, and so on.
Developmental impacts: Specify developmental impacts, such as resources required
to develop databases, resources required to develop and test the software, and specific
activities to be performed by user during software development.
Security impacts: Describe security factors that may influence the development,
design, and continued operation of the proposed software.

• Alternative systems: Provide description of alternative systems, which are considered
in feasibility study. It also describes the reasons for choosing a particular alternative
system to develop the proposed software and the reason for rejecting other alternative
systems.

3.4 REQUIREMENTS ELICITATION

Requirements elicitation (also known as requirements capture or requirements
acquisition) is a process of collecting information about software requirements from different

Check Your Progress

3. What are the objectives of
feasibility study?

4. List the task are performed
by operational feasibility.

5. What is the role of
information assessment in
feasibility study process?

6. Explain briefly functional
objective and performance
objective of feasibility
study plan.

System Analysis

Self-Instructional Material 75

NOTES

individuals, such as users and other stakeholders. Stakeholders are individuals who are
affected by the system, directly or indirectly. These include project managers, marketing
people, consultants, software engineers, maintenance engineers, and user.

Various issues may arise during requirements elicitation and may cause difficulty in
understanding the software requirements. Some of the problems are listed below:

• Problems of scope: This problem arises when the boundary of software (that is, scope)
is not defined properly. Due to this, it becomes difficult to identify objectives as well as
functions and features to be accomplished in software.

• Problems of understanding: This problem arises when users are not certain about
their requirements and thus are unable to express what they require in software and
which requirements are feasible. This problem also arises when users have no or little
knowledge of the problem domain and are unable to understand the limitations of
computing environment of software.

• Problems of volatility: This problem arises when requirements change over time.

Requirements elicitation uses elicitation techniques, which facilitate a software engineer to
understand user requirements and software requirements needed to develop the proposed
software.

3.4.1 Elicitation Techniques
Various elicitation techniques are used to identify the problem, determine its solution, and
identify different approaches for the solution. These techniques also help the stakeholders
to clearly express their requirements by stating all the important information. The commonly
followed elicitation techniques are listed below:

• Interviews: These are conventional ways for eliciting requirements, which help software
engineer, users, and software development team to understand the problem and suggest
solution for the problem. For this, the software engineer interviews the users with a
series of questions. When an interview is conducted, rules are established for users and
other stakeholders. In addition, an agenda is prepared before conducting interviews,
which includes the important points (related to software) to be discussed among users
and other stakeholders. An effective interview should have the characteristics listed
below:

Individuals involved in interviews should be able to accept new ideas. Also, they
should focus on listening to the views of stakeholders related to requirements and
avoid biased views.
Interviews should be conducted in defined context to requirements rather than in
general terms. For this, users should start with a question or a requirements proposal.

• Scenarios: These are descriptions of a sequence of events, which help to determine
possible future outcome before the software is developed or implemented. Scenarios are
used to test whether the software will accomplish user requirements or not. Also, scenarios
help to provide a framework for questions to software engineer about users’ tasks.
These questions are asked from users about future conditions (what-if) and procedure
(how) in which they think tasks can be completed. Generally, a scenario comprises of
the information listed below:

Description of what users expect when scenario starts.
Description of how to handle the situation when software is not operating correctly.
Description of the state of software when scenario ends.

• Prototypes: Prototypes help to clarify unclear requirements. Like scenarios, prototypes
also help users to understand the information they need to provide to software development
team.

Software Engineering

76 Self-Instructional Material

NOTES

• Quality function deployment (QFD): This deployment translates user requirements
into technical requirements for the software. For this, QFD facilitates development team
to understand what is valuable to users so that quality can be maintained throughout the
software development. QFD identifies some of the common user requirements, which
are listed below:

General requirements: These requirements describe the system objectives, which
are determined by various requirements elicitation techniques. Examples of general
requirements are graphical displays requested by users, specific software functions,
and so on.

Expected requirements: These requirements are implicit to software, as users
consider them to be fundamental requirements, which will be accomplished in the
software and hence do not express them. Examples of expected requirements are
ease of software installation, ease of software and user interaction, and so on.

Unexpected requirements: These requirements specify the requirements that are
beyond user expectations. These requirements are not requested by the user but if
development team adds them to the software, users are satisfied to have the software
with the additional features. An example of unexpected requirements is to have word
processing software with additional capabilities, such as page layout capabilities
along with the earlier features.

3.5 REQUIREMENTS ANALYSIS

IEEE defines requirements analysis as “(1) the process of studying user needs to arrive at a
definition of a system, hardware, or software requirements. (2) the process of studying and
refining system, hardware, or software requirements”. Requirements analysis helps to
understand, interpret, classify, and organize the software requirements in order to assess
the feasibility, completeness, and consistency of the requirements. Various other tasks
performed using requirements analysis are listed below:

• Detect and resolve conflicts that arise due to unclear and unstated requirements.
• Determine operational characteristics of software and how it interacts with its

environment.
• Understand the problem for which software is to be developed.
• Develop analysis model to analyze the requirements in the software.

Software engineers perform analysis modelling and create analysis model to provide
information of ‘what’ software should do instead of ‘how’ to fulfil the requirements in
software. This model emphasizes on information, such as the functions that software
should perform, behaviour it should exhibit, and constraints that are applied on the software.
This model also determines the relationship of one component with other components. The
clear and complete requirements specified in analysis model help software development
team to develop software according to those requirements. An analysis model is created to
help the development team to assess the quality of software when it is developed. An
analysis model helps to define a set of requirements that can be validated when the software
is developed.
Let us consider an example of constructing a study room, where user knows the dimensions
of the room, the location of doors and windows, and the available wall space. Before
constructing the study room, user provides information about flooring, wallpaper, and so
on to the constructor. This information helps the constructor to analyze the requirements
and prepare an analysis model that describes the requirements. This model also describes
what needs to be done to accomplish those requirements. Similarly, an analysis model
created for software facilitates software development team to understand what is required
in software and then develop it.

Check Your Progress

7. Name the various
requirement elicitation
techniques.

8. What kind of information is
included in scenarios
elicitation technique?

System Analysis

Self-Instructional Material 77

NOTES

In Figure 3.6, analysis model connects
system description and design model.
System description provides information
about the entire functionality of system,
which is achieved by implementing
software, hardware, and data. In addition,
analysis model specifies the software
design, in the form of design model, which
provides information about software’s
architecture, user interface, and component
level structure.

The guidelines followed while creating an analysis model are listed below:

• The model should concentrate on requirements that are present within the problem with
detailed information about the problem domain. However, an analysis model should not
describe the procedure to accomplish requirements in the system.

• Every element of analysis model should help in understanding the software requirements.
This model should also describe the information domain, function and behaviour of the
system.

• The analysis model should be useful to all stakeholders because every stakeholder uses
this model in their own manner. For example, business stakeholders use this model to
validate requirements whereas software designers view this model as a basis for design.

• The analysis model should be as simple as possible. For this, additional diagrams that
depict no new or unnecessary information should be avoided. Also, abbreviations and
acronyms should be used instead of complete notations.

The choice of representation is made according to requirements to avoid inconsistencies
and ambiguity. Due to this, analysis model comprises of structured analysis, object-oriented
modelling, and other approaches. Each of these describes a different manner to represent
the functional and behavioural information. Structured analysis expresses this information
through data flow diagrams, whereas object-oriented modelling specifies the functional
and behavioural information using objects. Other approaches include ER modelling and
several requirements specification languages and processors.

Structured
Analysis

Object-Oriented
Modelling

Other
Approaches

Analysis
Model

Figure 3.7 Analysis Model

3.5.1 Structured Analysis
Structured analysis is a top-down approach, which focuses on refining the problem with
the help of functions performed in the problem domain and data produced by these functions.
The basic principles of this approach are:

Figure 3.6 Analysis Model as Connector

Software Engineering

78 Self-Instructional Material

NOTES

• To facilitate software engineer in order to determine the information received during
analysis and to organize the information to avoid complexity of the problem.

• To provide a graphical representation to develop new software or enhance the existing
software.

Generally, structured analysis is represented using data flow diagram.

(a) Data Flow Diagram (DFD): IEEE defines data flow diagram (also known as bubble
chart or work flow diagram) as “a diagram that depicts data sources, data sinks, data
storage, and processes performed on data as nodes, and logical flow of data as links
between the nodes”. DFD allows software development team to depict flow of data from
one or more processes to another. In addition, DFD accomplishes the objectives listed
below:

• Represents system data in hierarchical manner and with required level of detail.

• Depicts processes according to defined user requirements and software scope.

DFD depicts the flow of data within a system and considers a system that transforms
inputs into the required outputs. When there is complexity in a system, data needs to be
transformed by using various steps to produce an output. These steps are required to refine
the information. The objective of DFD is to provide an overview of the transformations
that occur to the input data within the system in order to produce an output.

DFD should not be confused with a flowchart. A DFD represents the flow of data whereas
flowchart depicts the flow of control. Also, a DFD does not depict the information about
the procedure to be used for accomplishing the task. Hence, while making DFD, procedural
details about the processes should not be shown. DFD helps a software designer to describe
the transformations taking place in the path of data from input to output

DFD comprises of four basic notations (symbols), which help to depict information in a
system. These notations are listed in Table 3.2.

Table 3.2 DFD Notations

Name Notation Description

External entity Represents the source or destination of data within the
system. Each external entity is identified with a meaningful
and unique name.

Data flow Represents the movement of data from its source to
destination within the system.

Data store Indicates the place for storing information within the
system.

Process Shows a transformation or manipulation of data within the
system. A process is also known as bubble.

While creating a DFD, certain guidelines are followed to depict the data flow of system
requirements effectively. These guidelines help to create DFD in an understandable manner.
The commonly followed guidelines for creating DFD are listed below:

• DFD notations should be given meaningful names. For example, verb should be used for
naming a process whereas nouns should be used for naming external entity, data store,
and data flow.

• Abbreviations should be avoided in DFD notations.
• Each process should be numbered uniquely but the numbering should be consistent.

System Analysis

Self-Instructional Material 79

NOTES

• DFD should be created in an organized manner so that it is easily understandable.
• Unnecessary notations should be avoided in DFD in order to avoid complexity.
• DFD should be logically consistent. For this, processes without any input or output and

any input without output should be avoided.
• There should be no loops in DFD.

• DFD should be refined until each process performs a simple function so that it can be
easily represented as a program component.

• DFD should be organized in a series of levels so that each level provides more detail than
the previous level.

• The name of a process should be carried to the next level of DFD.

• Each DFD should not have more than six processes and related data stores.

• The data store should be depicted at the context level where it first describes an interface
between two or more processes. Then, the data store should be depicted again in the
next level of DFD that describes the related processes.

There are various levels of DFD, which provide detail about the input, processes, and
output of a system. Note that the level of detail of process increases with increase in
level(s). However, these levels do not describe the systems’ internal structure or behaviour.
These levels are listed below:

• Level 0 DFD (also known as context diagram): Shows an overall view of the system.

• Level 1 DFD: Elaborates level 0 DFD and splits the process into a detailed form.

• Level 2 DFD: Elaborates level 1 DFD and displays the process(s) in a more detailed
form.

• Level 3 DFD: Elaborates level 2 DFD and displays the process(s) in a detailed form.

To understand various levels of DFD, let us consider an example of banking system. In
Figure 3.8, level 0 DFD is drawn, this DFD represents how ‘user’ entity interacts with
‘banking system’ process and avails its services. The level 0 DFD depicts the entire banking
system as a single process. There are various tasks performed in a bank, such as transaction
processing, pass book entry, registration, demand draft creation, and online help. The data
flow indicates that these tasks are performed by both the user and bank. Once the user
performs transaction, the bank verifies whether the user is registered in the bank or not.

User

User info

Verify User Banking System User

Transaction

Pass Book Entry

Registration

Demand Draft Creation

Online Help

Figure 3.8 Level 0 DFD of Banking System

Software Engineering

80 Self-Instructional Material

NOTES

The level 0 DFD is expanded in level 1 DFD (see Figure 3.9). In this DFD, ‘user’ entity is
related to several processes in the bank, which include ‘register’, ‘user support’, and
‘provide cash’. Transaction can be performed if user is already registered in the bank.
Once the user is registered, user can perform transaction by the processes, namely, ‘deposit
cheque’, ‘deposit cash’, and ‘withdraw cash’. Note that the line in the process symbol
indicates the level of process and contains a unique identifier in the form of a number. If
user is performing transaction to deposit cheque, the user needs to provide cheque to the
bank. The user’s information, such as name, address, and account number is stored in
‘user_detail’ data store, which is a database. If cash is to be deposited and withdrawn,
then, the information about the deposited cash is stored in ‘cash_detail’ data store. User
can get demand draft created by providing cash to the bank. It is not necessary for the user
to be registered in that bank to have demand draft. The details of amount of cash and date
are stored in ‘DD_detail’ data store. Once the demand draft is prepared, its receipt is
provided to the user. The ‘user support’ process helps users by providing answers to their
queries related to the services available in the bank.

Level 1 DFD can be further refined into level 2 DFD for any process of banking system
that has detailed tasks to perform. For instance, level 2 DFD can be prepared to deposit
cheque, deposit cash, withdraw cash, provide user support, and to create demand draft.
However, it is important to maintain the continuity of information between the previous
levels (level 0 and level 1) and level 2 DFD. As mentioned earlier, the DFD is refined until
each process performs a simple function, which is easy to implement.

Let us consider the ‘withdraw cash’ process (as shown in Figure 3.9) to illustrate level 2
DFD. The information collected from level 1 DFD acts as an input to level 2 DFD. Note
that ‘withdraw cash’ process is numbered as ‘3’ in Figure 3.9 and contains further processes,
which are numbered as ‘3.1’, ‘3.2’, ‘3.3’, and ‘3.4’ in Figure 3.10. These numbers represent
the sublevels of ‘withdraw cash’ process. To withdraw cash, bank checks the status of
balance in user’s account (as shown by ‘check account status’ process) and then allots
token (shown as ‘allot token’ process). After the user withdraws cash, the balance in
user’s account is updated in the ‘user_detail’ data store and statement is provided to the
user.

User

Queries

6 7

User
Support

Provide
Cash

Amount of cash
Data

Receipt
User

Create
Demand Draft

8

DD detail

Cash info

Cash detail

Account
no., date

4 3 5

Deposit
Cash

Withdraw
Cash

Update
Passbook

Account no.,
Date

Account no.,
Date

Register Deposit
Cheque

Account no.,
Date

User detail

1 2

Figure 3.9 Level 1 DFD to Perform Transaction

System Analysis

Self-Instructional Material 81

NOTES

User detail

3.1

3.2 3.3

3.4

Update
Balance

Check Acco-
unt StatusInformation

Provide
Statement

Allot Token

Cheque

Figure 3.10 Level 2 DFD to Withdraw Cash

If a particular process of level 2 DFD requires
elaboration, then this level is further refined into level
3 DFD. Let us consider the process ‘check account
status’ (see Figure 3.10) to illustrate level 3 DFD. In
Figure 3.11, this process contains further processes
numbered as ‘3.1.1’ and ‘3.1.2’, which describe the
sublevels of ‘check account status’ process. To check
the account status, the bank fetches the account detail
(shown as ‘fetch account detail’ process) from the
‘account_detail’ data store. After fetching the details,
the balance is read (shown as ‘read balance’ process)
from the user’s account. Note that the requirements
engineering process of DFDs continues until each
process performs a function that can be easily
implemented as an individual program component.

(b) Data Dictionary: Although data flow diagrams contain meaningful names of notations,
they do not provide complete information about the structure of data flows. For this, data
dictionary is used, which is a repository that stores description of data objects to be used by
the software. Data dictionary stores an organized collection of information about data and
their relationships, data flows, data types, data stores, processes, and so on. In addition, a
data dictionary helps users to understand the data types and processes defined along with
their uses. It also facilitates the validation of data by avoiding duplication of entries and
provides online access to definitions to the users.

Data dictionary comprises of the source of data, which are data objects and entities. In
addition, it comprises of the elements listed below:

• Name: Provides information about the primary name of the data store, external entity,
and data flow.

• Alias: Describes different names of data objects and entities used.

• Where-used/how-used: Lists all the processes that use data objects and entities and
how they are used in the system. For this, it describes the inputs to the process, output
from the process, and the data store.

• Content description: Provides information about the content with the help of data
dictionary notations (such as ‘=’, ‘+’, and ‘* *’).

• Supplementary information: Provides information about data types, values used in
variables, and limitations of these values.

Figure 3.11 Level 3 DFD to
Check Account Status

Fetch Account
Detail

3.1.2Account detail

Read Balance

3.1.1

Software Engineering

82 Self-Instructional Material

NOTES

3.5.2 Object-oriented Modelling
Now a days object-oriented approach is used to describe system requirements using
prototypes. This approach is performed using object-oriented modelling (also known as
object-oriented analysis), which analyzes the problem domain and then partitions the
problem with the help of objects. An object is an entity that represents a concept and
performs a well-defined task in the problem domain. For this, an object contains information
of the state and provides services to entities, which are outside the object(s). The state of
an object changes when it provides services to other entities.

The object-oriented modelling defines a system as a set of objects, which interact with
each other by the services they provide. In addition, objects interact with users through
their services so that they can avail the required services in the system.

To understand object-oriented analysis, it is important to understand the various
concepts used in object-oriented environment. Some of the commonly used these
concepts are listed in Table 3.3.

Table 3.3 Object-Oriented Concepts

Object-Oriented Concepts Description

Object An instance of a class used to describes the entity.

Class A collection of similar objects, which encapsulates data and
procedural abstractions in order to describe their states and
operations to be performed by them.

Attribute A collection of data values that describe the state of a class.

Operation Also known as methods and services, provides a means to modify
the state of a class.

Super-class Also known as base class, is a generalization of a collection of
classes related to it.

Sub-class A specialization of superclass and inherits the attributes and
operations from the superclass.

Inheritance A process in which an object inherits some or all the features of
a superclass.

Polymorphism An ability of objects to be used in more than one form in one or
more classes.

Generally, it is considered that object-oriented systems are easier to develop and maintain.
Also, it is considered that the transition from object-oriented analysis to object-oriented
design can be done easily. This is because object-oriented analysis is resilient to changes as
objects are more stable than functions that are used in structured analysis. Note that object-
oriented analysis comprises a number of steps, which includes identifying objects, identifying
structures, identifying attributes, identifying associations, and defining services.

System Analysis

Self-Instructional Material 83

NOTES

Identifying
Objects

Identifying
Structures

Identifying
Attributes

Identifying
Associations

Defining
Services

Step 5

Step 4

Step 3

Step 2

Step 1

Figure 3.12 Steps in Object-oriented Analysis

(a) Identifying Objects: While performing analysis, an object encapsulates the attributes
on which it provides the services. Note that an object represents entities in a problem
domain. The identification of the objects starts by viewing the problem space and its
description. Then, a summary of the problem space is gathered to consider the ‘nouns’.
Nouns indicate the entities used in problem space and which will further be modelled as
objects. Some examples of nouns that can be modelled as objects are structures, events,
roles, and locations.

(b) Identifying Structures: Structures depict the hierarchies that exist between the objects.
Object modelling applies the concept of generalization and specialization to define hierarchies
and to represent the relationships between the objects. As mentioned earlier, superclass is a
collection of classes, which can further be refined into one or more subclasses. Note that
a subclass can have its own attributes and services apart from the attributes and services
inherited from its superclass. To understand generalization and specialization, consider an
example of class ‘car’. Here, ‘car’ is a superclass, which has attributes, such as wheels,
doors, and windows. There may be one or more subclasses of a superclass. For instance,
superclass ‘car’ has subclasses ‘Mercedes’ and ‘Toyota’, which have the inherited attributes
along with their own attributes, such as comfort, locking system, and so on.

It is essential to consider the objects that can be identified as generalization so that the
classification of structure can be identified. In addition, the objects in the problem domain
should be determined to check whether they can be classified into specialization or not.
Note that the specialization should be meaningful for the problem domain.

(c) Identifying Attributes: Attributes add details about an object and store the data for the
object. For example, the class ‘book’ has attributes, such as author name, ISBN, and
publication house. The data about these attributes is stored in the form of values and are
hidden from outside the objects. However, these attributes are accessed and manipulated
by the service functions used for that object. The attributes to be considered about an
object depend on the problem and the requirement for that attribute. For example, while
modelling the student admission system, attributes, such as age and qualification are required
for the object ‘student’. On the other hand, while modelling for hospital management
system, the attribute ‘qualification’ is unnecessary and requires other attributes of class
‘student’, such as gender, height, and weight. In short, it can be said that while using an
object, only the attributes that are relevant and required by the problem domain should be
considered.

(d) Identifying Associations: Associations describe the relationship between the instances
of several classes. For example, an instance of class ‘University’ is related to an instance of

Software Engineering

84 Self-Instructional Material

NOTES

class ‘person’ by ‘educates’ relationship. Note that there is no relationship between the
class ‘University’ and class ‘person’, however only the instance(s) of class ‘person’ (that
is, student) is related to class ‘University’. This is similar to entity relationship modelling,
where one instance can be related by 1:1, 1:M, and M:M relationships.

An association may have its own attributes, which may or may not be present in other
objects. Depending on the requirement, the attributes of the association can be ‘forced’ to
belong to one or more objects without losing the information. However, this should not be
done unless the attribute itself belongs to that object.

(e) Defining Services: As mentioned earlier, an object performs some services. These
services are carried out when an object receives a message for it. Services are a medium to
change the state of an object or carry out a process. These services describe the tasks and
processes provided by a system. It is important to consider the ‘occur’ services in order to
create, destroy, and maintain the instances of an object. To identify the services, the system
states are defined and then the external events and the required responses are described.
For this, the services provided by objects should be considered.

3.5.3 Other Approaches
Many other approaches have been proposed for requirements analysis and specification.
These approaches help to arrange information and provide an automated analysis of
requirements specification of the software. In addition, these approaches are used for
organizing and specifying a requirement. The specification language used for modelling
can be either graphical (depicting requirements using diagrams) or textual (depicting
requirements in text form). Generally, approaches used for analysis and specification include
structured analysis and design technique and entity relationship modelling.

(a) Structured Analysis and Design Technique: Structured analysis and design technique
(SADT) uses a graphical notation and is generally applied in information processing systems.
The SADT language is known as language of structured analysis (SA). SADT comprises
of two parts, namely, structured analysis and design technique (DT). SA describes the
requirements with the help of diagrams, whereas DT specifies how to interpret the results.

The model of SADT consists of an organized collection of SA diagrams. These diagrams
facilitate a software engineer to identify the requirements in a structured manner by following
top-down approach and decomposing system activities, data, and their relationships. The
text embedded in these diagrams is written in natural language, thus specification language
is a combination of both graphical language and natural language. The commonly used SA
diagrams include activity diagram (actigram) and data diagram (datagram). These diagrams
use input, output, control, and mechanism for providing a reference in an SA diagram. For
this, both activity diagram and data diagram comprise of nodes and arcs. Note that each
diagram must consist of 3 to 6 nodes including the interconnecting arcs. These diagrams
are similar to data flow diagram as they follow top-down approach but differ from DFD as
they may use loops, which are not used in it.

In Figure 3.13, an activity diagram is shown
with nodes and arcs. The nodes represent
the activities and arcs describe the data
flow between the activities. Four different
types of arcs can be connected to each
node, namely, input data, control data,
processor, and output data. Input data is
the data that are transformed to output(s).
Control data is the data that constrain
the kind or extent of process being described. Processor describes the mechanism,
which is in the form of tools and techniques to perform the transformation.

Figure 3.13 Activity Diagram

Control Data

Activity

Processor

Input Data Output
Data

System Analysis

Self-Instructional Material 85

NOTES

Output data is the result produced after sending input, performing control activity,
and mechanism in a system. The arcs on the left side of a node indicate inputs and
the arcs on the right-side indicate outputs. The arcs entering from the top of a node
describe the control, whereas the arcs entering from the bottom describe the mechanism.
The data flows are represented with the help of inputs and outputs while the processors
represent the mechanism.

In Figure 3.14, a data diagram is shown
with nodes and arcs, which are similar
to that of an activity diagram. The nodes
describe the data objects and the arcs
describe the activities. A data diagram
also uses four different types of arcs.
The arcs on the left side indicate inputs
and the arcs on the right side indicate
the output. Here, input is the activity
that creates a data object, whereas output is the activity that uses the data object. The
‘control activity’ (arcs entering from top) controls the conditions in which the node is
activated and the ‘storage device’ (arcs entering from bottom) indicates the mechanism for
storing several representations of a data object. Note that in both the diagrams, controls
are provided by the external environment and by the outputs from other nodes.

Structured analysis and design technique provides a notation and a set of techniques, which
facilitate to understand and record the complex requirements clearly and concisely. The
top-down approach used in SADT helps to decompose high-level nodes into subordinate
diagrams and to differentiate between the input, output, control, and mechanism for each
node. In addition, this technique provides actigrams and datagrams and the management
techniques to develop and review an SADT model. Note that SADT can be applied to all
types of systems and is not confined only to software applications.

(b) Entity Relationship Modelling: IEEE defines entity relationship (ER) diagram as “a
diagram that depicts a set of real-world entities and the logical relationships among them”.
This diagram depicts entities, the relationships between them, and the attributes pictorially
in order to provide a high-level description of conceptual data models. ER diagram is used
in different phases of software development.

Once an ER diagram is created, the information represented by it is stored in the database.
Note that the information depicted in an ER diagram is independent of the type of database
and can later be used to create database of any kind, such as relational database, network
database, or hierarchical database. ER diagram comprises of data objects and entities, data
attributes, relationships, and cardinality and modality.

Data Objects and Entities: Data object is a representation of composite information
used by software. Composite information refers to different features or attributes of a data
object and this object can be in any of the form listed below:

• External entity: Describes the data that produces or accepts information. For example,
a report.

• Occurrence: Describes an action of a process. For example, a telephone call.
• Event: Describes a happening that occurs at a specific place or time. For example, an

alarm.
• Role: Describes the actions or activities assigned to an individual or object. For example,

a systems analyst.
• Place: Describes location of objects or storage area. For example, a wardrobe.
• Structure: Describes the arrangement and composition of objects. For example, a file.

Figure 3.14 Data Diagram

Control Activity

Data

Storage Device

Generating
Activity

Using
Activity

Software Engineering

86 Self-Instructional Material

NOTES

An entity is the data that stores information about the system in a database. Examples of an
entity include real world objects, transactions, and persons.
Data Attributes Data attributes describe the properties of a data object. Attributes that
identify entities are known as key attributes. On the other hand, attributes that describe
an entity are known as non-key attributes. Generally, a data attribute is used to perform
the functions listed below:

• Naming an instance (occurrence) of data object.

• Description of the instance.

• Making reference to another instance in another table.

Data attributes help to identify and classify an occurrence of entity or a relationship. These
attributes represent the information required to develop software and there can be several
attributes for a single entity. For example, attributes of ‘account’ entity are ‘number’,
‘balance’, and so on. Similarly, attributes of ‘user’ entity are ‘name’, ‘address’, and ‘age’.
However, it is important to consider the maximum attributes during requirements elicitation
because with more attributes, it is easier for software development team to develop software.
In case, some of the data attributes are not applicable, they can be discarded at later stage.

Relationships: Entities are linked to each other in different ways. This link or connection
of data objects or entities with each other is known as relationship. Note that there should
be at least two entities to establish relationship between them. Once the entities are identified,
software development team checks whether relationship exists between them or not. Each
relationship has a name, optionality (the state when relationship can be possible but not
necessary), and degree (how many). These attributes confirm the validity of a given
relationship. Based on this, three types of relationships exist among entities. These relationships
are listed below:

• One-to-one relationship (1:1): Indicates that one instance of an entity is related only to
another instance of another entity. For example, in a database of users in a bank, each
user is related to only one account number.

• One-to-many relationship (1:M): Indicates that one instance of an entity is related to
several instances of an entity. For example, one user can have many accounts in different
banks.

• Many-to-many relationship (M:M): Indicates that many instances of entities are related
to several instances of another entity. For example, many users can have their accounts
in many banks.

To understand entities, data attributes, and relationship, let us consider an example. Suppose
in a computerised banking system, one of the processes is to use saving account, which
includes two entities, namely, ‘user’ and ‘account’. Each ‘user’ has a unique ‘account
number’, which makes it easy for the bank to refer to a particular registered user. On the
other hand, account entity is used to deposit cash and cheque and to withdraw cash from
the saving account. Depending upon the type and nature of transactions, it can be of
various types, such as current account, saving account, or over draft account. The
relationship between user and account can be described as ‘user has account in a bank’.

In Figure 3.15, entities are represented by rectangles, attributes are represented by ellipses,
and relationships are represented by diamond symbols. A key attribute is also depicted by
an ellipse but with a line below it. This line below the text in the ellipse indicates the
uniqueness of each entity.

System Analysis

Self-Instructional Material 87

NOTES

Account

Account
Number

Balance

Account
Type

Saving
Account

Current
Account

Over-draft
Account

Data

Has

First
Name

Last
Name

Address

Name Contact
Number

User

ATM

ATM
Number

ATM Cash
Limit

ATM
Place

Performs
Transaction

Deposit
Cheque

Deposit
Cash

Withdraw
Cash

Figure 3.15 ER Diagram of Banking System

Cardinality and Modality: Although data objects, data attributes, and relationships are
essential for structured analysis, additional information about them is required to understand
the information domain of the problem. This information includes cardinality and modality.
Cardinality specifies the number of occurrences (instances) of one data object or entity
that relates to the number of occurrence of another data object or entity. It also specifies
the number of entities that are included in a relationship. Modality describes the possibility
whether a relationship between two or more entities and data objects is required or not. The
modality of a relationship is 0 if the relationship is optional. However, the modality is 1 if an
occurrence of the relationship is essential.

To understand the concept of cardinality and modality properly, let us consider an example.
In Figure 3.16, user entity is related to order entity. Here, cardinality for ‘user’ entity
indicates that user places an order, whereas modality for ‘user’ entity indicates that it is
necessary for a user to place an order. Cardinality for ‘order’ indicates that a single user
can place many orders, whereas modality for ‘order’ entity indicates that a user can arrive
without any ‘order’.

Modality:
Customer is
required to

have an order

Modality:
Customer can
arrive without

any order

Customer Order

Cardinality:
Expresses that a
single customer
placed a given

order

Cardinality:
Expresses that a
given customer

has many
orders

Figure 3.16 Cardinality and Modality

Check Your Progress

9. How does IEEE define
requirement analysis?

10. What are the basic
principles of top down
approach of requirement
analysis?

11. Explain briefly two
approaches used for
requirement analysis and
specification.

Software Engineering

88 Self-Instructional Material

NOTES

3.6 REQUIREMENTS SPECIFICATION

The output of requirements phase of software development process is the software
requirement specification document (also known as requirements document). This
document lays a foundation for software engineering activities and is created when entire
requirements are elicited and analyzed. Software requirement specification (SRS) is a formal
document, which acts as a representation of software that enables the users to review
whether it (SRS) is according to their requirements or not. In addition, the requirements
document includes user requirement for a system as well as detailed specification of the
system requirement.

IEEE defines software requirement specification as “a document that clearly and precisely
describes each of the essential requirements (functions, performance, design constraints,
and quality attributes) of the software and the external interfaces. Each requirement is
defined in such a way that its achievement can be objectively verified by a prescribed
method, for example, inspection, demonstration, analysis, or test.” Note that requirement
specification can be in the form of a written document, a mathematical model, a collection
of graphical models, a prototype, and so on.

Essentially, what passes from requirement analysis activity to the specification activity is
the knowledge acquired about the system. The need for maintaining requirements document
is that the modelling activity essentially focuses on the problem structure and not its structural
behaviour. While in SRS, performance constraints, design constraints, standard compliance
recovery are clearly specified in the requirements document. This information helps in
properly developed design of a system. Various other purposes served by SRS are listed
below:

• Feedback: Provides a feedback, which ensures to the user that the organization (which
develops the software) understands the issues or problems to be solved and the software
behaviour necessary to address those problems.

• Decompose problem into components: Organises the information and divides the
problem into its component parts in an orderly manner.

• Validation: Uses validation strategies, applied to the requirements to acknowledge that
requirements are stated properly.

• Input to design: Contains sufficient detail in the functional system requirements to
devise a design solution.

• Basis for agreement between user and organization: Provides a complete description
of the functions to be performed by the system. In addition, it helps the users to determine
whether the specified requirements are accomplished or not.

• Reduce the development effort: Enables developers to consider user requirements
before the designing of the system commences. As a result, ‘rework’ and inconsistencies
in the later stages can be reduced.

• Estimating costs and schedules: Determines the requirements of the system and thus
enable the developer to have a ‘rough’ estimate of the total cost and the schedule of the
project.

Requirements document is used by various individuals in the organization As shown in
Figure 3.17, system customers needs SRS to specify and verify whether requirements
meet the desired needs or not. In addition, SRS enables the managers to plan for the system
development processes. System engineers need requirements document to understand what
system is to be developed. These engineers also require this document to develop validation
test for the required system. Lastly, requirements document is required by system
maintenance engineers to use the requirement and the relationship between its parts.

System Analysis

Self-Instructional Material 89

NOTES

Requirements document has diverse users, therefore along with communicating the
requirements to the users it also has to define the requirements in precise detail for developers
and testers. In addition it should also include information about possible changes in the
system, which can help system designers to avoid restricted decisions on design. SRS also
helps maintenance engineers to adapt the system to new requirements.

So

ftw
are Requirement

Specification Documen
t

Managers

Sy
st

em
 E

ng
in

ee
rs

System
 Customers

Figure 3.17 SRS Users

Characteristics of Software Requirements Specification: Software requirement
specification should be accurate, complete, efficient, and of high-quality, so that it does not
affects the entire project plan. A SRS is said to be of high quality when the developer and
user easily understand the prepared document. Other characteristics of SRS are listed
below:

• Correct: SRS is correct when all user requirements are stated in the requirements
document. The stated requirements should be according to the desired system. This
implies that each requirement is examined to ensure that it (SRS) represents user
requirements. Note that there is no specified tool or procedure to assure the correctness
of SRS. Correctness ensures that all specified requirements are performed correctly.

• Unambiguous: SRS is unambiguous when every stated requirement has only one
interpretation. This implies that each requirement is uniquely interpreted. In case there is
a term used with multiple meanings, the requirements document should specify the
meanings in the SRS so that it is clear and easy to understand.

• Complete: SRS is complete when the requirements clearly define what the software is
required to do. This includes all the requirements related to performance, design and
functionality.

• Ranked for importance/stability: All requirements are not equally important, hence,
each requirement is identified to make differences among other requirements. For this, it
is essential to clearly identify each requirement. Stability implies the probability of changes
in the requirement in future.

• Modifiable: The requirements of the user can change, hence, requirements document
should be created in such a manner where those changes can be modified easily,
consistently maintaining the structure and style of the SRS.

• Traceable: SRS is traceable when the source of each requirement is clear and it facilitates
the reference of each requirement in future. For this, forward tracing and backward
tracing are used. Forward tracing implies that each requirement should be traceable to
design and code elements. Backward tracing implies defining each requirement explicitly
referencing its source.

Software Engineering

90 Self-Instructional Material

NOTES

• Verifiable: SRS is verifiable when the specified requirements can be verified with a
cost-effective process to check whether the final software meets those requirements or
not. The requirements are verified with the help of reviews. Note that unambiguity is
essential for verifiability.

• Consistent: SRS is consistent when the subset of individual requirements defined does
not conflict with each other. For example, there can be a case when different requirements
can use different terms to refer to the same object. There can be logical or temporal
conflicts between the specified requirements and some requirements whose logical or
temporal characteristics are not satisfied. For instance, a requirement states that an
event ‘a’ is to occur before another event ‘b’. But then another set of requirements
states (directly or indirectly by transitivity) that event ‘b’ should occur before event ‘a’.

3.6.1 Structure of SRS
The requirements document is devised in a manner that is easier to write, review and
maintain. It is organized into independent sections and each section is organized into modules
or units. Note that the level of detail to be included in the SRS depends on the type of the
system to be developed and the process model chosen for its development. For example, if
a system is to be developed by an external contractor, then critical system specifications
need to be precise and very detail. Similarly, when flexibility is required in the requirements
and where an in-house development takes place, requirements documents can be much
less detailed.

Since the requirements document serves as a foundation for subsequent software development
phases, it is important to develop the document in the prescribed manner. For this, certain
guidelines are followed while preparing SRS. These guidelines are listed below:

• Functionality should be separate from implementation.
• Analysis model should be developed according to the desired behaviour of a system.

This should include data and functional response of a system to various inputs given to
it.

• Cognitive model (express a system as perceived by the users) should be developed
instead of developing a design or implementation model.

• The content and structure of the specification should be flexible enough to accommodate
changes.

• Specification should be robust. That is, it should be tolerant towards incompleteness
and complexity.

The information to be included in SRS depends on a number of factors. For example, the
type of software being developed and the approach used in its development. Suppose, if
software is developed using iterative development process, the requirements document will
be less detailed as compared to the software being developed for critical systems. This is
because specifications need to be very detailed and accurate in these systems. A number of
standards have been suggested to develop requirements document. However, the most
widely used standard is by IEEE, which acts as a general framework. This general framework
can be customised and adapted to meet the needs of a particular organization.

Each SRS fits a certain pattern, thus it is essential to standardize the structure of the
requirements document to make it easier to understand. For this IEEE standard is used for
SRS to organize requirements for different projects, which provides different ways of
structuring SRS. Note that in all requirements documents, the first two sections are same.

System Analysis

Self-Instructional Material 91

NOTES

1.0 Introduction
1.1 Purposes
1.2 Scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Overview

2.0 The Overall Description
2.1 Product Perspective

2.1.1 System Interface
2.1.2 Interface
2.1.3 Hardware Interface
2.1.4 Software Interface
2.1.5 Communications Interface
2.1.6 Memory Constraints
2.1.7 Operations
2.1.8 Site Adaptation Requirements

2.2 Product Functions
2.3 User Characteristics
2.4 Constraints
2.5 Assumptions and Dependency
2.6 Apportioning of Requirements

3.0 Specific Requirements
3.1 External Interface
3.2 Functions
3.3 Performance Requirements
3.4 Logical Database of Requirement
3.5 Design Constraints

3.5.1 Standards Compliance
3.6 Software System Attributes

3.6.1 Reliability
3.6.2 Availability
3.6.3 Security
3.6.4 Maintainability
3.6.5 Portability

3.7 Organizing the Specific Requirements
3.7.1 System Mode
3.7.2 User Class
3.7.3 Objects
3.7.4 Feature
3.7.5 Stimulus
3.7.6 Response
3.7.7 Functional Hierarchy

3.8 Additional Comments
4.0 Change Management Process
5.0 Document Approvals
6.0 Supporting Information

Figure 3.18 Software Requirements Specification Document

A software requirement specification document is shown in Figure 3.18. This document
has many sections, which are listed below:

• Introduction: Provides an overview of the entire information described in SRS. This
involves purpose and the scope of SRS, which states the functions to be performed by
the system. In addition, this section describes definitions, abbreviations, and the acronyms
used. The references used in SRS provide a list of documents that are referenced in the
document.

• Overall description: Determines factors, which affects the requirements of the system.
It provides a brief description of the requirements to be defined in the next section called
‘specific requirement’. It comprises of various sub-sections listed below:

Product perspective: Determines whether the product is an independent product or
an integral part of the larger product. It determines the interface with hardware,
software system, and communication. In addition, it also defines memory constraints
and operations utilised by the user.
Product functions: Provide a summary of the functions to be performed by the
software. The functions are organised in a list so that it is easily understandable to
the user.
User characteristics: Determine general characteristics of the users.

Software Engineering

92 Self-Instructional Material

NOTES

Constraints: Provide the general description of the constraints, such as regulatory
policies, audit functions, reliability requirements, and so on.
Assumption and dependency: Provides a list of assumptions and factors that affect
the requirements as stated in this document.
Apportioning of requirements: Determine requirements that can be delayed until
release of future versions of the system.

• Specific requirements: Determine all requirements in detail so that the designers can
design the system according to the requirements. The requirements include description
of every input and output of the system and functions performed in response to the input
provided. It comprises of various sub-sections listed below:

External interface: Determines the interface of software with other system, which
can include interface with operating system and so on. External interface also specifies
the interaction of the software with users, hardware, or other software. The
characteristics of each user interface of the software product are specified in SRS.
For the hardware interface, SRS specify the logical characteristics of each interface
among the software and hardware components. If the software is to be executed on
the existing hardware, then characteristics, such as memory restrictions are also
specified.

Functions: Determine the functional capabilities of the system. For each functional
requirement, the accepting and processing of inputs in order to generate outputs are
specified. This includes validity checks on inputs, exact sequence of operations,
relationship of inputs to output, and so on.

Performance requirements: Determine the performance constraints of the software
system. Performance requirement is of two types: static requirements and dynamic
requirements. Static requirements (also known as capacity requirements) do not
impose constraint on the execution characteristics of the system. These include
requirements like number of terminals and user to be supported. Dynamic
requirements determine the constraints on the execution of the behaviour of the
system, which includes response time (the time between the start and ending of an
operation under specified conditions) and throughput (total amount of work done in
a given time).

Logical database of requirement: Determines logical requirements to be stored in
the database. This includes type of information used, frequency of usage, data entities
and relationship among them, and so on.

Design constraint: Determines all design constraints that are imposed by standards,
hardware limitations, and so on. Standard compliance determines requirements for
the system, which are in compliance with the specified standards. These standards
can include accounting procedures and report format. Hardware limitations implies
when software can operate on existing hardware or some pre-determined hardware.
This can impose restrictions while developing software design. Hardware limitations
include hardware configuration of the machine and operating system to be used.

Software system attributes: Provide attributes, such as, reliability, availability,
maintainability, and portability. It is essential to describe all these attributes to verify
that these attributes are achieved in the final system.

Organizing specific requirements: Determine the requirements so that they can
be properly organised for optimal understanding. The requirements can be organised
on the basis of mode of operation, user classes, objects, feature, response, and
functional hierarchy.

System Analysis

Self-Instructional Material 93

NOTES

• Change management process: Determines the change management process in order
to identify, evaluate and update SRS to reflect changes in the project scope and
requirements.

• Document approvals: Provide information about the approvers of the SRS document
with the details, such as approver’s name, signature, date and so on.

• Supporting information: Provide information, such as table of contents, index and so
on. This is necessary especially when SRS is prepared for large and complex projects.

3.7 REQUIREMENTS VALIDATION

The development of software starts, once the requirements document is ‘ready’. One of
the objectives of this document is to check whether the delivered software system is
acceptable or not. For this, it is necessary to ensure that the requirements specification
contains no errors and that it specifies the user’s requirements correctly. Also, errors
present in the SRS will adversely affect the cost if they are detected later in the development
process or when the software is delivered to the user. Hence, it is desirable to detect errors
in the requirements before the design and development of the software begin. To check all
the issues related to requirements, requirements validation is performed.

In validation phase, the work products produced as a consequence of requirements
engineering are examined for consistency, omissions, and ambiguity. The basic objective is
to ensure that the SRS reflects the actual requirements accurately and clearly. Other objectives
of the requirements document are listed below:

• Certify that the SRS contains an acceptable description of the system to be implemented.

• Ensure that the actual requirements of the system are reflected in SRS.

• Check requirements document for completeness, accuracy, consistency, requirement
conflict, conformance to standards, and technical errors.

Requirements validation is similar to requirements analysis as both these processes review
the gathered requirements. Requirements validation studies the ‘final draft’ of the requirements
document, while, requirements analysis studies the ‘raw requirements’ from the system
stakeholders (users). Requirements validation and requirements analysis can be summarized
as follows:

• Requirements validation: Have we got the requirements right?

• Requirements analysis: Have we got the right requirements?

Requirements
Validation

Requirements
Document

Organizational
Knowledge

Organizational
Standards

List of
Problems

Agreed
Actions

Figure 3.19 Requirements Validation

In Figure 3.19, various inputs, such as requirements document, organizational knowledge,
and organizational standards are shown. The requirements document should be formulated
and organized according to the standards of the organization. The organizational knowledge
is used to estimate the realism of the requirements of the system. The organizational
standards are the specified standards followed by the organization according to which the
system is to be developed.

Check Your Progress
12. Define Software

requirement specification
(SRS).

13. List the guidelines for
preparing SRS.

Software Engineering

94 Self-Instructional Material

NOTES

The output of requirement validation is a list of problems and agreed actions of the problems.
The lists of problems indicate the problems encountered in the requirements document of
the requirement validation process. The agreed action is a list that displays the actions to
be performed to resolve the problems depicted in the problem list.

3.7.1 Requirement Review
Requirements validation determines whether the requirements are substantial to design the
system or not. Various problems are encountered during requirements validation. These
problems are listed below:

• Unclear stated requirements.

• Conflicting requirements are not detected during requirements analysis.

• Errors in the requirements elicitation and analysis.

• Lack of conformance to quality standards.

To avoid the problems stated above, a requirement review is conducted, which consists
of a review team that performs a systematic analysis of the requirements. The review team
consists of software engineers, users, and other stakeholders who examine the specification
to ensure that the problems associated with consistency, omissions and errors detected and
corrected. In addition, the review team checks whether the work products produced during
requirements phase conform to standards specified for the process, project and the product
or not.

In review meeting, each participant goes over the requirements before the meeting starts
and marks the items, which are dubious or they feel need for further clarification. Checklists
are often used for identifying such items. Checklists ensure that no source of errors whether
major or minor are overlooked by the reviewers. A ‘good’ checklist consists of the following:

• Is the initial state of the system defined?

• Does a conflict between one requirement and the other exist?

• Are all requirements specified at the appropriate level of abstraction?

• Is the requirement necessary or does it represent an add-on feature that may not be
essentially implemented?

• Is the requirement bounded and have a clear defined meaning?

• Is each requirement feasible in the technical environment where the product or system
is to be used?

• Is testing possible, once requirement is implemented?

• Are requirements associated with performance, behaviour, and operational characteristics
clearly stated?

• Are requirement pattern used to simplify the requirements model?

• Are the requirements consistent with overall objective specified for the system/product?

• Have all hardware resources been defined?

• Is provision for possible future modifications specified?

• Are functions included as desired by the user (and stakeholder)?

• Can the requirements be implemented in the available budget and technology?

• Are the resources of requirements or any system model (created) stated clearly?

System Analysis

Self-Instructional Material 95

NOTES

The checklists ensure that the requirements reflect users needs and that requirements
provide ‘groundwork’ for design. Using checklist, the participants specify the list of potential
errors they have uncovered. Lastly, the requirement analyst either agrees to the presence of
errors or clarifies that no errors exist.

3.7.2 Other Requirement Validation Techniques
A number of other requirement validation techniques are used either individually or in
conjunction with other techniques to check the entire system or parts of the system. The
selection of the validation technique depends on the appropriateness and the size of the
system to be developed. Some of these techniques are listed below:

• Test case generation: The requirements specified in the SRS document should be
testable. The test in the validation process can reveal problems in the requirement. In
some cases test becomes difficult to design, which implies that requirement is difficult
to implement and requires improvement.

• Automated consistency analysis: If the requirements are expressed in the form of
structured or formal notation, then computer aided software engineering (CASE) tools
can be used to check the consistency of the system. A requirements database is created
using a CASE tool that checks the entire requirements in the database using rules of
method or notation. The report of all inconsistencies is identified and managed.

• Prototyping: Prototyping is normally used for validating and eliciting new requirements
of the system. This helps to interpret assumptions and provide an appropriate feedback
about the requirements to the user. For example, if users have approved a prototype,
which consists of graphical user interface, then the user interface can be considered
validated.

3.8 REQUIREMENTS MANAGEMENT

Once a system has been deployed, new requirements inevitably emerge. It is difficult for
the users to anticipate the effect of these new requirements (if a new system is developed
for these requirements) on the organization. Thus, to understand and control changes to
system requirements, requirements management is performed.

Change
Management

Requirements
Attributes

Requirements
Tracing

Requirements
Management

Requirements Engineering

Requirements

AnalysisRe
qu

ire
ments

El
ici

tat
ion

Requirements

Validation Require
men

ts

Specifi
ca

tio
n

Figure 3.20 Requirements Management

Requirements management can be defined as a process of eliciting, documenting, organizing
and controlling changes to the requirements. Generally, the process of requirements
management begins as soon as requirements document is available, but ‘planning’ for

Check Your Progress
14. What are the objectives to

prepare software
validation?

15. What is the output of
requirement validation
phase?

Software Engineering

96 Self-Instructional Material

NOTES

managing the changing requirements should start during requirement elicitation process.
The essential activities performed in requirements management are listed below:

• Recognises the need of the change to the requirements.
• Establishes a relationship amongst stakeholders and involve them in the requirements

engineering process.
• Identifies and tracks requirements attributes.

Requirements management enables the development team to identify, control, and track
requirements and changes that occur as the software development process progresses.
Other advantages associated with the requirements management are listed below:
• Better control of complex projects: Provides the development team with a clear

understanding of what, when and why software is to be delivered. The resources are
allocated according to user-driven priorities and relative implementation effort.

• Improves software quality: Ensures that the software performs according to
requirements to enhance software quality. This can be achieved when the developers
and testers have a concise understanding of what to develop and test.

• Reduced project costs and delays: Minimizes errors early in the development cycle, as
it is expensive to ‘fix’ errors at the later stages of the development cycle. As a result, the
project costs also reduce.

• Improved team communications: Facilitates early involvement of users to ensure that
their needs are achieved.

• Easing compliance with standards and regulations: Ensures that standards involved
with software compliance and process improvement have thorough understanding of
requirement management. For example, capability maturity model (CMM) addresses
requirements management as one of the first steps to improve software quality.

All the user requirements are specified in the software requirement specification. The project
manager as part of requirements management tracks the requirement for the current project
and those requirements, which are planned for the next release.

3.8.1 Requirements Management Process
Requirements management starts with planning, which establishes the level of requirements
management needed. After planning, each requirement is assigned a unique ‘identifier’ so
that it can be crosschecked by other requirements. Once requirements are identified,
requirements tracing is performed.

Requirement tracing is a medium to trace requirements from the start of development
process till the software is delivered to the user. The objective of requirement tracing is to
ensure that all the requirements are well understood and are included in test plans and test
cases. Various advantages of requirement tracing are listed below:

• Verifies whether user requirements are implemented and adequately tested or not.
• Enables the user understanding of impact of changing requirements.

Traceability techniques facilitate the impact of analysis on changes of the project, which is
under development. Traceability information is stored in a traceability matrix, which
relates requirements to stakeholders or design module. Traceability matrix refers to a table
that correlates high-level requirements with the detailed requirements of the product. Mainly,
five types of traceability tables are maintained. These are listed in Table 3.4.

In traceability matrix each requirement is entered in a row and column of the matrix. The
dependencies between different requirements are represented in the cell at a row and column
intersection. In Figure 3.21, ‘U’ in the row and column intersection indicates the dependencies
of the requirement in the row on the column and ‘R’ in the row and column intersection
indicates the existence of some other weaker relationship between the requirements.

System Analysis

Self-Instructional Material 97

NOTES

Table 3.4 Types of Traceability Tables

Traceability Table Description

Features traceability Indicates how requirements relate to important features specified by the
user.

Source traceability Identifies the source of each requirement by linking the requirements to
the stakeholders who proposed them. When a change is proposed,
information from this table can be used to find and consult the
stakeholders.

Requirement traceability Indicates how dependent requirements in the SRS are related to one
another. Information from this table can be used to evaluate the number
of requirements that will be affected due to the proposed change(s).

Design traceability Links the requirements to the design modules where these requirements
are implemented. Information from this table can be used to evaluate the
impact of proposed requirements changes on the software design and
implementation.

Interface traceability Indicates how requirements are related to internal interface and external
interface and external interface of a system.

Note that tracing matrix is useful when less number of requirements are to be managed.
However, traceability matrices are expensive to maintain when a large system with large
requirement is to be developed. This is because large requirements are not easy to manage.
Due to this, the traceability information of large system is stored in the ‘requirement database’
where each requirement is explicitly linked to related requirements. This helps to assess,
how a change in one requirement affects the different aspects of the system to be developed.

Req. ID 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

1.1 U R

1.2 U R U

1.3 R R

2.1 R U U

2.2 U

2.3 R U

3.1 R

3.2 R

Figure 3.21 Traceability Matrix

3.8.2 Requirements Change Management
Requirements change management is used when there is a request or proposal for a change
to the requirements. The advantage of this process is that the changes to the proposals are
managed consistently and in a controlled manner.

Revised
RequirementsChange

Implementation
Change Analysis

and
Costing

Problem Analysis
and Change
Specilization

Identified
Problem

Figure 3.22 Requirement Change Management

Software Engineering

98 Self-Instructional Material

NOTES

An efficient requirements change management process undergoes a number of stages for
changes to the requirement, which are shown in Figure 3.22. These stages are listed below:

• Problem analysis and change specification: The entire process begins with identification
of problems to the requirements. The problem or proposal is analyzed to verify whether
the change is valid or not. The outcome of the analysis is provided to the ‘change
requester’ and a more specific requirements change proposals is then made.

• Change analysis and costing: The effect of a change requested on the requirement is
assessed according to traceability information. The cost for this can be estimated on the
basis of modification made to the design and implementation. After analysis is over, a
decision is made as to whether changes are to be made or not.

• Change implementation: Finally, the changes are made to the requirements document,
system design and implementation. The requirements document is organised in such a
manner so that changes to it can be made without extensive rewriting. Minimising the
external references and making document sections modular achieve changeability in the
document. By doing this, individual sections can be changed and replaced without affecting
other parts of the document.

3.9 CASE STUDY: STUDENT ADMISSION AND
EXAMINATION SYSTEM

ABC University wants to automate its admission and examination system for the two years
course of masters in business administration (MBA). The main objective of developing this
software is to help the university to manage the database of students efficiently. This software
will maintain the electronic record related to personal and academic data of each student.

3.9.1 Problem Statement
The problem statement provides an outline of the system from user’s perspective. ABC
University offers IV-semester MBA programme. This statement has three modules, namely,
registration module, examination module, and result generation module.
• Registration module: To be a part of the university, an applicant must be registered,

for which the applicant should pay the required registration fee. This fee can be paid
through demand draft or cheque drawn from a nationalized bank. After successful
registration an enrolment number is allotted to each student, which makes the student
eligible to appear in the examination.

• Examination module: The examination of the MBA programme comprises of
assignments, theory papers, practical papers, and a project.

Assignments: Each subject has an associated assignment, which is compulsory
and should be submitted by the student before a specified date. Each assignment
carries 20 marks where student obtaining 40% or more (>= 8 marks) is said to have
passed.
Theory papers: The theory papers can be core or elective. Core papers are mandatory
papers, while in elective papers, students have a choice to select two out of three
papers. Note that in first three semesters there are four core papers and three elective
papers out of which two papers are to be chosen. Also, the student is required to
prepare a project in the IVth semester. Each theory paper carries 50 marks where
student obtaining 40% or more (>= 20 marks) is said to have passed.
Practical papers: The practical papers are mandatory and every semester has three
of them. Each practical paper carries 30 marks where student obtaining 40% or
more (>= 12 marks) is said to have passed.

Check Your Progress
16. Describe the role of

requirement tracing in the
process of requirements
management.

17. Explain three stages of
requirement change
management.

System Analysis

Self-Instructional Material 99

NOTES

Project: Students need to submit a project in the IVth semester. This project carries
100 marks where student obtaining 50% or more (>= 50 marks) is said to have
passed. Also, students are required to appear for a viva-voce session, which will be
related to the project.

• Result generation module: The result is declared on the university’s website. This
website contains mark sheets of the students who have appeared in the examination of
the said semester (for which registration fee has been paid). Note that to view the result
student can use enrolment number as password.

3.9.2 Data Flow Diagrams
The data flow diagrams of various levels are shown as follows:

Student

Student
Admission

and
Examination

System

Registration

Examination

Result Generation

Figure 3.23 Level 0 DFD

1

Registration

Enrolment
no. allotedApplication

for registration

StudentStudent detail

Enter
enrolment
no. and

semester 2

Login

Enter student
choice

Administrator

Student
Information

entry
5

Student
Information

Management

Subject
choice detail

View report

3

Examination
System

Student Choice
Management

System

Figure 3.24 Level 1 DFD of Student Admission and Examination System

Administrator
Registration

form

Demand Draft no.,
Cheque no.

1.2

Admission

Student

Enrolment no.
Allotted

Student
registered

Student detail

Verification
of Payment

1.1

Figure 3.25 Level 2 DFD of Registration

Software Engineering

100 Self-Instructional Material

NOTES

Administrator

Student Coordinator

User account detail

2.1

Authenticated
User

User ID,
Password

Enrolment no.,
semester

User ID,
password

Figure 3.26 Level 2 DFD of Marks Information System

Student detail

Marks detail

Mark-sheet

Semester
result

3.2

Result Report
Generation

3.1

Marks
Information

Management

Figure 3.27 Level 2 DFD of Examination

1.2.2

1.2.1
Fetch

Student
Information

Check Seme-
ster and

Registration

Student detail

Figure 3.28 Level 3 DFD Registration

3.9.3 Entity Relationship Diagram
The ER diagram of student admission and examination system is shown in Figure 3.29.

System Analysis

Self-Instructional Material 101

NOTES

Mode of
Payment

Bank
Name

Fees

Pays

Internal
marks

External
marks Takes

MBA Programme

No. of
Semesters

No. of
subjects
in each

semesters
Registers

Examination

Total
marks Pass/Fail

Year

Marks Enrolment
no.

Student Takes Subject

Name

Semester

Type

Code

Figure 3.29 ER Diagram of Student Management System

3.9.4 Software Requirements Specification Document
The SRS document describes the overall requirements of ABC University to automate the
proposed system. This document follows IEEE guidelines for requirements specification
document with some variations.

1. Introduction

This section specifies the overall requirements of the software. The final software will
have features according to this document and assumptions for any additional features
should be made by individuals involved in developing/ testing/ implementing/ using this
product.

(a) Purpose

The requirements specification document determines the capability of the software
to be developed. In addition, it specifies constraints required by the system.

(b) Scope

The final software when developed will help the university in registering students
and conducting examination. In addition, this will manage the record of the subjects
offered in different semesters, the students’ choice of elective papers and the
marks obtained by them in different subjects in various semesters.

(c) Definitions, acronyms, and abbreviations

Following abbreviations are used in the entire specification document.

MBA: Master in business administration

DB: Database

DBMS: Database management system

Software Engineering

102 Self-Instructional Material

NOTES

RAM: Random access memory

MB: Megabyte

(d) References

University website: Provides information about the course, result, and other
information.

(e) Overview

The SRS document provides description about the system requirements, interfaces,
features, and functionalities.

2. Overall description

The proposed system will maintain information about the students who are enrolled in
the MBA programme. In addition, it will manage the record of the subjects taken by the
students in different semesters, choice of elective paper and marks obtained by the
students in different semesters. In the Ist, IInd, and IIIrd semesters, students have to
appear in six theory subjects and three practical papers. It is mandatory to submit a
project report in IVth semester, which is followed by viva-voce for the same.

(a) Product perspective

The application will be Windows-based and an independent software application.

(i) System interface

None

(ii) Interface

The application will have a menu screen, which will have the following
options:

Login screen: Enter the user name, password, and role (student,
administrator, and coordinator). Note that role is defined to know the
information about the individual(s) accessing the software. This is
essential to prevent the students from modifying the result in the database.
Hence, the students will have access to the information about whether
they have been successfully registered or not and can view the subject-
wise result of each semester or year.

Subject screen: Enter information regarding the subjects offered in
different semesters. In addition, the subject screen displays the information
about the assignments, subjects (that is, core or elective), and the project.

Examination screen: Enter information about the registered students
who seek to take examination.

Student screen: Enter information about the student enrolled for MBA
in different semesters.

Marks screen: Enter information about the marks of assignments, theory
papers, and practical papers. In addition, marks screen displays the
information of the subjects successfully completed. Marks of the student
will be displayed in the form of printable mark-sheet, which includes
total marks and percentage of the student.

(iii) Hardware interface

Screen resolutions with minimum of 800 × 600 pixels should be used. It
should also support output devices like printer.

System Analysis

Self-Instructional Material 103

NOTES

(iv) Software interface

The software interfaces that will be used for the proposed system are listed
below:

Windows-based operating system (such as, Windows 95/98/XP/NT).

Oracle 8i as the database management system (DBMS) to store files and
other related information.

Crystal reports 8 to generate and view reports.

Visual Basic 6.0 as a front-end tool for coding and designing the software.

Internet Explorer 5.5 or higher to view results of the examination on the
Internet.

(v) Communication interface

None

(vi) Memory constraints

Intel Pentium III processor or higher with a minimum of 128 MB RAM and
600 MB of hard disk space will be required so that software performs its
functions in an optimum manner.

(vii) Operations

The software release will not include automated and maintenance of database.
The university is responsible for manually deleting old/outdated data and
managing backup and recovery of data.

(viii) Site adaptations requirements

The terminals at the user’s end will have to support the interfaces (both
hardware and software) as mentioned above.

(b) Product functions

The system will allow access only to authorized users like student, administrator
and coordinator depending upon the role. Some of the functions that will be
performed by the software are listed below:

Login facility for authorized users.

Perform modification (by administrator only), such as adding or deleting the
marks obtained by the students.

Provide a printable version of the mark-sheet (result) of the students.

Use of ‘clear’ function to delete the existing information in the database.

(c) User characteristics

None.

(d) Constraints

As Oracle 8i is a powerful database, it can store a large number of records.

The university should have a security policy to maintain information related to
marks, which are to be modified by administrator.

(e) Assumptions and dependencies

The subjects taken by the students in the semester will not change.

Software Engineering

104 Self-Instructional Material

NOTES

The number of semesters and elective subjects offered by the university will
not change.

(f) Apportioning of requirements

Not required.

3. Specific requirements

This section provides the information required by the developers to develop the system.

(a) External interface

This contains complete description of inputs and outputs from the software system.

(b) Functions

None.

(c) Performance requirements

None.

(d) Logical database requirements

The information that will be stored in the database is listed below:

Student detail: Stores information about student’s enrolment number, student
name, the year of enrolment, and fees details according to the semester.

Subject choice detail: Stores information about subject name, code, and
semester. In addition, it stores information about enrolment number, semester,
and the subject chosen by the student.

Marks detail: Stores information about student’s enrolment number and the
subject-wise marks secured by the student.

User account detail: Stores information about user name, password, and role.

(e) Design constraints

None.

(f) Software system attributes

(i) Security

The application will be password protected and hence, will require users to
enter their login ID (user name) and password.

(ii) Maintainability

The application will be designed in a manner that it is easy to modify the
software system later, when required and to incorporate new requirements
in the individual modules, such as subject information, marks information,
and user accounts.

(iii) Portability

The application will be easily portable on any Windows-based system that
has Oracle 8i installed on it.

4. Change management process

In case the university desires to modify the criteria to select the elective papers or
change the number of practical papers in each semester, then the changes will be
updated and reflected in SRS document accordingly.

System Analysis

Self-Instructional Material 105

NOTES

5. Document approvals

When the requirements are gathered according to the user, SRS is then finally reviewed,
approved, and signed by the developer and user (university). This SRS serves as a
contract for software development activities.

6. Supporting information

None.

3.10 DATA DICTIONARY
The data dictionary for the data stores used in the level 1 DFD can be shown as in
Figure 3.30

User detail = *Entity. Stores the personal information of the user. *
Account_no. +
First_name +
Middle_name +
Last_name +
Address +
Phone

Cash detail = * Entity. Stores the details of the cash deposited or withdrawn *
Amount +
No_of_notes +
Total_amount

DD detail: *Entity. Stores the details of demand drafts *
DD_number +
DD_date +
DD_amount +
In_favour_of +
Payable_at

Figure 3.30 Data Dictionary

3.11 LET US SUMMARIZE

1. A requirement is defined as (1) a condition or capability needed by a user to solve a
problem or achieve an objective. (2) A condition or capability that must be met or
possessed by a system or system component to satisfy a contract, standard,
specification, or other formally imposed documents. (3) A documented representation
of a condition or capability as in (1) or (2).

2. Guidelines act as an efficient method of expressing requirements, which also provide a
basis for software development, system testing, and user satisfaction.

3. Various requirements considered before starting software development are generally
classified into three categories, namely, functional requirements, non-functional
requirements, and domain requirements.

4. The functional requirements, also known as behavioural requirements, describe the
functionality or services that software should provide. For this, functional requirements
describe the interaction of software with its environment and specify the inputs, outputs,
external interfaces and sometimes, the functions that should not be included in the
software.

5. The non-functional requirements, also known as quality requirements, relate to system
attributes, such as reliability and response time. Different types of non-functional

Software Engineering

106 Self-Instructional Material

NOTES

requirements include product requirements, organizational requirements, and external
requirements.

6. Domain requirements are derived from the application domain of a system, instead
from the needs of the users. These requirements may be new functional requirements
or specify a method to perform some particular computations.

7. The requirements engineering process is a series of activities that are performed in
requirements phase in order to express requirements in software requirements
specification (SRS) document. This process focuses on understanding the requirement
and its type so that an appropriate technique is determined to carry out the requirements
engineering process.

8. Various steps of requirements engineering process include feasibility study, requirements
elicitation, requirements analysis, requirements specification, requirements validation,
and requirements management.

9. Feasibility refers to the evaluation of the software process, design, procedure, or plan
in order to determine whether they can be successfully accomplished in the software
in the allotted time or not. To evaluate feasibility, a feasibility study is performed, which
determines whether the solution considered to accomplish the requirements is practically
workable in the software or not.

10. The commonly considered types of feasibility include technical feasibility, operational
feasibility, and economic feasibility.

11. Technical feasibility assesses the current resources (such as hardware and software)
and technology, which are required to accomplish user requirements in the software
within the allocated time and budget.

12. Operational feasibility assesses the extent to which the required software performs
series of steps to solve business problems and user requirements.

13. Economic feasibility determines whether the required software is capable of generating
economic benefits for an organization or not.

14. Requirements elicitation, also known as requirements capture and requirements
acquisition, is a process of collecting information about software requirements from
different individuals, such as users and other stakeholders.

15. The commonly followed elicitation techniques include interviews, scenarios, prototypes,
and quality function deployment.

16. Requirements analysis is (1) the process of studying user needs to arrive at a definition
of a system, hardware, or software requirements. (2) The process of studying and
refining system, hardware, or software requirements.

17. Analysis model comprises of structured analysis, object-oriented modelling, and by
applying other approaches.

18. Structured analysis is a top-down approach, which focuses on refining the problem
with the help of functions performed in the problem domain and data produced by
these functions. Generally, the structured analysis is depicted by a data flow diagram,
which uses several levels to provide detailed information about the system.

19. A data dictionary is an organized collection of information about data and their
relationships, data flows, data types, data stores, processes, and so on. It also helps
users to understand the data types and processes defined along with their uses.

20. The object-oriented modelling defines a system as a set of objects, which interact with
each other by the services they provide. In addition, objects interact with users through
their services so that they can avail the required services in the system. Various concepts
used in object-oriented modelling are objects, classes, attributes, operations, superclass,
subclass, and so on.

System Analysis

Self-Instructional Material 107

NOTES

21. Structured analysis and design technique (SADT), also known as language of structured
analysis, uses a graphical notation and is generally applied in information processing
systems. SADT comprises of two parts, namely, structured analysis (SA) and design
technique (DT). SA describes the requirements with the help of diagrams, whereas DT
specifies how to interpret the results.

22. ER diagram is a diagram that depicts a set of real-world entities and the logical relationships
among them. This diagram depicts entities, the relationships between them, and the
attributes pictorially in order to provide a high-level description of conceptual data
models. ER diagram comprises of data objects and entities, data attributes, relationships,
and cardinality and modality.

23. Software requirement specification (SRS) is a formal document, which acts as a
representation of software that enables the users to review whether it (SRS) is according
to their requirements or not. In addition, the requirements document includes user
requirement for a system as well as detailed specification of the system requirement.
The structure of SRS differs according to the project and the requirements.

24. Requirements validation determines whether the requirements are substantial to design
the system or not. Requirements validation techniques include test case generation,
automated consistency analysis, and prototyping.

25. Requirements management is a process of eliciting, documenting, organizing and
controlling changes to the requirements. The process of requirements management
begins as soon as requirements document is available, but ‘planning’ for managing the
changing requirements should start during requirement elicitation process.

26. Requirements change management is used when there is a request or proposal for a
change to the requirements. The advantage of this process is that the changes to the
proposals are managed consistently and in a controlled manner.

3.12 ANSWERS TO ‘CHECK YOUR PROGRESS’
1. The requirements, which are commonly considered, are classified into three categories,

namely, functional requirements, non-functional requirements, and domain
requirements.

2. The requirements engineering (RE) process is a series of activities that are performed
in requirements phase in order to express requirements in software requirements
specification (SRS) document. This process focuses on understanding the requirement
and its type so that an appropriate technique is determined to carry out the requirements
engineering process.

3. The objective of feasibility study is to establish the reasons for developing software
that is acceptable to users, adaptable to change, and conformable to established
standards. Various other objectives of feasibility study are listed below:

• Analyze whether the software will meet organizational requirements or not.
• Determine whether the software can be implemented using current technology

and within the specified budget and schedule or not.
• Determine whether the software can be integrated with other existing software or

not.

4. Operational feasibility performs tasks listed below:

• Determines whether the problems proposed in user requirements are of high priority
or not.

• Determines whether the solution suggested by software development team is
acceptable or not.

Software Engineering

108 Self-Instructional Material

NOTES

• Analyses whether users will adapt to new software or not.
• Determines whether the organization is satisfied by the alternative solutions proposed

by software development team or not.

5. Information assessment identifies information about whether the system helps in
achieving the objectives of the organisation. In addition it verifies that the system can
be implemented using new technology and within the budget. It also verifies whether
the system can be integrated with the existing system.

6. Functional objective: Provides information about functions of the system, such as
new services, increased capacity, and so on.

Performance objective: Provides information about performance objectives, such
as reduced staff and equipment cost, increased processing speed of software, and
improved controls.

7. The commonly followed elicitation techniques are listed below:

• Interviews
• Scenarios
• Prototypes
• Quality function deployment (QFD)

8. Generally, a scenario comprises of the information listed below:

• Description of what users expect when scenario starts.
• Description of how to handle the situation when software is not operating correctly.
• Description of the state of software when scenario ends.

9. IEEE defines requirements analysis as “(1) the process of studying user needs to
arrive at a definition of a system, hardware, or software requirements. (2) the process
of studying and refining system, hardware, or software requirements”.

10. Structured analysis is a top-down approach, which focuses on refining the problem
with the help of functions performed in the problem domain and data produced by
these functions. The basic principles of this approach are:

• To facilitate software engineer in order to determine the information received during
analysis and to organize the information to avoid complexity of the problem.

• To provide a graphical representation to develop new software or enhance the
existing software.

11. Generally, approaches used for analysis and specification include structured analysis
and design technique and entity relationship modelling.

• Structured analysis and design technique (SADT) uses a graphical notation and is
generally applied in information processing systems. The SADT language is known
as language of structured analysis (SA). SADT comprises of two parts, namely,
structured analysis and design technique (DT). SA describes the requirements
with the help of diagrams, whereas DT specifies how to interpret the results.

• IEEE defines entity relationship (ER) diagram as “a diagram that depicts a set of
real-world entities and the logical relationships among them”. This diagram depicts
entities, the relationships between them, and the attributes pictorially in order to
provide a high-level description of conceptual data models. ER diagram is used in
different phases of software development.

12. IEEE defines software requirement specification as “a document that clearly and
precisely describes each of the essential requirements (functions, performance, design
constraints, and quality attributes) of the software and the external interfaces. Each

System Analysis

Self-Instructional Material 109

NOTES

requirement is defined in such a way that its achievement can be objectively verified
by a prescribed method, for example, inspection, demonstration, analysis, or test.”

13. Since the requirements document serves as a foundation for subsequent software
development phases, it is important to develop the document in the prescribed manner.
For this, certain guidelines are followed while preparing SRS. These guidelines are
listed below:

• Functionality should be separate from implementation.
• Analysis model should be developed according to the desired behaviour of a system.

This should include data and functional response of a system to various inputs
given to it.

• Cognitive model (express a system as perceived by the users) should be developed
instead of developing a design or implementation model.

• The content and structure of the specification should be flexible enough to
accommodate changes.

• Specification should be robust. That is, it should be tolerant towards incompleteness
and complexity.

14. In validation phase, the work products produced as a consequence of requirements
engineering are examined for consistency, omissions, and ambiguity. The basic
objective is to ensure that the SRS reflects the actual requirements accurately and
clearly. Other objectives of the requirements validation are listed below:

• Certify that the SRS contains an acceptable description of the system to be
implemented.

• Ensure that the actual requirements of the system are reflected in SRS.
• Check requirements document for completeness, accuracy, consistency,

requirement conflict, conformance to standards, and technical errors.

15. The output of requirement validation is a list of problems and agreed actions of the
problems. The lists of problems indicate the problems encountered in the requirements
document of the requirement validation process. The agreed action is a list that displays
the actions to be performed to resolve the problems depicted in the problem list.

16. Requirement tracing is a medium to trace requirements from the start of development
process till the software is delivered to the user. The objective of requirement tracing
is to ensure that all the requirements are well understood and are included in test plans
and test cases.

17. An efficient requirements change management process undergoes a number of stages
for changes to the requirement.

These stages are listed below:

• Problem analysis and change specification: The entire process begins with
identification of problems to the requirements. The problem or proposal is analyzed
to verify whether the change is valid or not. The outcome of the analysis is provided
to the ‘change requester’ and a more specific requirements change proposals is
then made.

• Change analysis and costing: The effect of a change requested on the requirement
is assessed according to traceability information. The cost for this can be estimated
on the basis of modification made to the design and implementation. After analysis
is over, a decision is made as to whether changes are to be made or not.

• Change implementation: Finally, the changes are made to the requirements
document, system design and implementation. The requirements document is
organised in such a manner so that changes to it can be made without extensive

Software Engineering

110 Self-Instructional Material

NOTES

rewriting. Minimising the external references and making document sections
modular achieve changeability in the document. By doing this, individual sections
can be changed and replaced without affecting other parts of the document.

3.13 QUESTIONS AND EXERCISES

I. Fill in the Blanks

1. The different types of software system requirements are _________________,
non-functional requirements, and ____________.

2. The notations used to depict information in a data flow diagram include
_______________, data flow, ____________, and process.

3. ________________ defines a system as a set of objects, which interact with
each other by the services they provide.

4. For an SRS document to be accurate and efficient, it should be correct,
_____________, _________, and verifiable.

II. Multiple Choice Questions

1. Which of the following is not a step of requirements engineering process?

(a) Requirements specification (b) Requirements analysis
(c) Feasibility study (d) Requirements prioritization

2. Which of the following is the user requirement identified in quality function
deployment?
(a) Expected requirements (b) General requirements
(c) Both (a) and (b) (d) None of the above

3. SADT stands for:

(a) Software analysis and development technique

(b) Structured analysis and design technique

(c) System analysis and design technique

(d) Structured analysis and development technique

4. Which one of the following is a requirements validation technique?
(a) Interviews (b) Automated consistency analysis
(c) SADT (d) Quality function deployment

III. State Whether True or False

1. Both DFD and flowchart depict the flow of data.
2. An entity diagram depicts a set of real-world entities and the logical relationships

among them.
3. The structure of an SRS document changes depending upon the project and

requirements.
4. Traceability matrix refers to a table that correlates user requirements with the

organizational requirements.

System Analysis

Self-Instructional Material 111

NOTES

IV. Descriptive Questions

1. “It is easy for software engineers to develop software according to user
requirements even if they are incomplete as software engineers can consider the
user requirements of earlier developed software”. Do you agree with this
statement? Why or why not? Give reasons in support of your answer.

2. What is requirements management? Describe its process.

3. Consider a student admission system for XYZ University, which is to be automated.
For this system, create the following:
(a) Make DFDs of 2–3 levels. (b) Draw ER diagram

4. Prototyping is advantageous to understand the problem and user requirements.
Do you think it is always advantageous to perform prototyping? Are there any
disadvantages of this approach?

5. HEP university decides to design software for its library information system,
which should allow only the authorised person to insert, delete, upgrade, and
select records related to books in the system. Also, the system should maintain
information related to the issue and return of books to members. For this system,
create the following:
(a) Develop the software requirements specification.
(b) Design DFDs of 2–3 levels.
(c) Identify various modules and their operation.
(d) Design ER diagram depicting the library information system.

3.14 FURTHER READING

1. Software Engineering: A Practitioner’s Approach – Roger Pressman

2. Software Engineering – Ian Sommerville

3. An Integrated Approach to Software Engineering – Pankaj Jalote

Software Design

Self-Instructional Material 113

NOTES

UNIT 4 SOFTWARE DESIGN
Structure
4.0 Introduction
4.1 Unit Objectives
4.2 Basics of Software Design

4.2.1 Principles of Software Design; 4.2.2 Software Design Concepts
4.2.3 Developing a Design Model

4.3 Data Design
4.4 Architectural Design

4.4.1 Architectural Design Representation; 4.4.2 Architectural Styles
4.5 Procedural Design

4.5.1 Functional Independence
4.6 User Interface Design

4.6.1 User Interface Rules; 4.6.2 User Interface Design Process
4.6.3 Evaluating User Interface Design

4.7 Software Design Notation
4.8 Software Design Reviews

4.8.1 Types of Software Design Reviews; 4.8.2 Software Design Review Process
4.8.3 Evaluating Software Design Reviews

4.9 Software Design Documentation (SDD)
4.10 Case Study: Higher Education Online Library System

4.10.1 Data Design; 4.10.2 Architectural Design; 4.10.3 Procedural Design
4.10.4 User Interface Design

4.11 Object-oriented Concepts
4.12 Let us Summarize
4.13 Answers to ‘Check Your Progress’
4.14 Questions and Exercises
4.15 Further Reading

4.0 INTRODUCTION

Once the requirements document for the software to be developed is available, the software
design phase begins. While the requirement specification activity deals entirely with the
problem domain, design is the first phase of transforming the problem into a solution. In
design phase, customer and business requirements and technical considerations all come
together to formulate a product or a system.

Design process comprises of a set of principles, concepts, and practices, which allows a
software engineer to model the system or product that is to be built. This model known as
design model is assessed for quality and reviewed before code is generated and tests are
conducted. The design model provides detail about software data structures, architecture,
interfaces, and components, which are required to implement the system. This chapter
discusses the design elements required to develop a software design model. It also discusses
the design patterns, design notations and design documentation used to represent software
design.

4.1 UNIT OBJECTIVES

After reading this unit, the reader will understand:

• Why software design is considered to be an important software engineering activity?

Software Engineering

114 Self-Instructional Material

NOTES

• Various software design principles, which act as a framework for the designers to
follow a good design practice.

• Various software design concepts, which form the base for software design process.

• Elements of software design model, which include data design, architecture design,
procedural design, and interface design.

• How data design leads to better program structure, effective modularity, and reduced
complexity?

• Architectural design, which acts as a preliminary ‘blueprint’ from which software can
be developed.

• Procedural design, which is created by transforming the structural elements defined by
the software architecture into procedural descriptions of software components.

• How user interface design creates effective communication medium between a human
and a computing machine?

• How design notations are used to represent software design.
• How software design reviews are used to evaluate the adequacy of the design

requirements?
• The importance of software design documentation.

4.2 BASICS OF SOFTWARE DESIGN

Software design is a software engineering activity where software requirements are analyzed
in order to produce a description of the internal structure and organization of the system
that serves as a basis for its construction (coding). IEEE defines software design as “both
a process of defining the architecture, components, interfaces, and other characteristics of
a system or component and the result of that process”.

During software design phase, many critical and strategic decisions are made to meet the
required functional and quality requirements of a system. These decisions are taken into
account to successfully develop the software and carry out its maintenance in a systematic
manner to improve the quality of the end product.

Objectives of Software Design: The main objective of software design phase is to develop
a blue print which serves as a base while developing the software system. The other
objectives of software design are listed below:

• To produce various models that can be analyzed and evaluated to determine if they will
allow the various requirements to be fulfilled.

• To examine and evaluate various alternative solutions and trade-offs involved.
• To plan subsequent software development activities.

4.2.1 Principles of Software Design
Developing design is a cumbersome process as most expansive errors are often introduced
in this phase. Since problems in the design phase can be very expensive to solve in later
stages of the software development, a number of principles are considered while designing
the software. These principles act as a framework for the designers to follow a good
design practice. Some of the commonly followed design principles are listed below:

• Software design should be traceable to the analysis model: As a single design element
often relates to multiple requirements, it becomes essential to have a means for tracking
how requirements are satisfied by the design model.

• Choose the right programming paradigm: A programming paradigm is the framework
used for designing and describing the structure of the software system. The two most

Software Design

Self-Instructional Material 115

NOTES

popular programming paradigms are the procedural paradigm and the object-oriented
paradigm. The paradigm should be chosen keeping in mind constraints, such as time,
availability of resources, and nature of user’s requirements.

• Software design should demonstrate uniformity and integration: In most cases,
rules, format, and styles are defined in advance to the design team before the design
work begins. The design is said to be integrated and uniform if the interfaces are properly
defined among design components.

• Software design should be structured to adapt change: The fundamental design
concepts (abstraction, refinement, modularity) should be applied to achieve this principle.

• Software design should appraise to minimise conceptual (semantic) errors: Design
team must ensure that major conceptual elements of design, such as ambiguousness and
inconsistency are addressed in advance before dealing with the syntactical errors present
in the design model.

• Software design should be structured to degrade gently: Software should be designed
to handle unusual changes and circumstances, and if need arise for termination; it must
do so in a proper manner so that functionality of the software is not affected.

Traceable to
Analysis
Model

Minimise
Conceptual
(Semantic)

Errors

Minimise the
Intellectual
distance

in the Real
World

Designing for
Testability Prototyping

Code
Reuse

Degrade
Genthy

Uniformity
and Infegration

Programming
ParadigmAdapt

Change

Figure 4.1 Design Principles of Software

• Software design should ‘minimise the intellectual distance’ between the software
and problem existing in the real world: The design structure should be such that it
always relates with the real-world problem.

• Code reuse: There is a common saying among software engineers: ‘do not reinvent the
wheel’. Therefore, existing design hierarchies should be effectively reused to increase
productivity.

• Designing for testability: A common practice that has been followed is to separate
testing from design and implementation. That is, the software is designed, implemented,
and then handed over to the testers, who subsequently determine whether or not the
software is fit for distribution and subsequent use by the customer. However, it has
become apparent that the process of separating testing is seriously flawed, as discovering
these types of errors after implementation usually requires the entire or a substantial part
of the software to be redone. Thus, the test engineers should be involved from the very
beginning. For example, they should work with the requirements analysts to devise tests
that will determine whether the software meets the requirements or not.

Software Engineering

116 Self-Instructional Material

NOTES

• Prototyping: Prototyping should be used to explore those aspects of the requirements,
user interface, or software’s internal design, which are not easily understandable. Using
prototyping a quick ‘mock-up’ of the system can be developed. This mock up can be
used as a highly effective means to highlight misconceptions and reveal hidden assumptions
about the user interface and how the software should perform. Prototyping also reduces
the risk of designing software that does not fulfil customer’s requirements.

Note that design principles are often constrained by the existing hardware configuration,
the implementation language, the existing file and data structures, and the existing
organizational practices. Also, the evolution of each software design should be meticulously
designed for future evaluations, references, and maintenance.

4.2.2 Software Design Concepts
Every software process is characterised by basic concepts along with certain practices or
methods. Methods are the expression of the concepts as they apply to a particular situation.
As new technology replaces older technology, many changes occur in the methods that are
applied for development of software. However, the fundamental concepts underlining the
software design process remain the same. The concepts discussed below provide the
‘underlying basis’ for development and evaluation of software design.

(a) Abstraction: Abstraction refers to a powerful design tool, which allows software
designers to consider components at an abstract level, while neglecting the implementation
details of the components. IEEE defines abstraction as “a view of a problem that extracts
the essential information relevant to a particular purpose and ignores the remainder of the
information”. Abstraction is used both as a process and as an entity. As a process, it
denotes the extraction of the essential details about an item, or a group of items, while
ignoring non-essential details. As an entity, it denotes a model, a view, or some other
focused representation of an actual item.

Each step in the software process is accomplished through various levels of abstraction. At
the highest level of abstraction, a solution is broadly stated using the language of the problem
environment. At lower levels of abstraction, a detailed description about the solution is
presented. For example, during system engineering, software is viewed as an element of
computer based engineering, while in requirement analysis, same software is viewed as a
solution to a problem domain, and as we move through the design phase, the level of
abstraction is reduced to the source code generation.

There are three commonly used abstraction mechanisms in software design, namely,
functional abstraction, data abstraction, and control abstraction. All these mechanisms
allow us to control the complexity of the design process by proceeding from the abstract
design model to concrete design model in a systematic manner.

• Functional abstraction: Involves use of parameterised subprograms. Functional
abstraction can be generalised as collections of subprograms referred to as ‘groups’.
Within these groups there exist routines, which may be visible or hidden. Visible routines
can be used within the containing groups as well as within other groups whereas hidden
routines are hidden from other groups and can be used within the containing group only.

• Data abstraction: Involves specifying data that describes a data object. For example,
the data object ‘window’ encompasses a set of attributes (window type, window
dimension) that describe the ‘window’ object clearly. In this abstraction mechanism,
representation and manipulation details are ignored.

• Control abstraction: States the desired effect, without stating the exact mechanism of
control. For example, if and while statements in programming languages (like C and
C++) are abstractions of machine code implementations, which involve conditional
instructions. In architectural design level, this abstraction mechanism permits

Software Design

Self-Instructional Material 117

NOTES

specifications of sequential subprogram and exception handlers without the concern for
exact details of implementation.

(b) Architecture: Software architecture refers to the structure of the components of a
program/system, their interrelationships, and guidelines governing their design and evolution
over time. Software architecture can be defined as a program or computing system, which
comprises of software elements, the externally visible properties of those elements, and the
relationships amongst them. The software architecture must extract some information
from the system and provide enough information to form a basis for analysis, decision-
making, and ways of handling risk. The software architecture:

• Provides an insight to all the interested stakeholders that enable all these stakeholders to
communicate amongst them.

• Highlights early design decisions, which have great impact on the software engineering
activities (like coding and testing) that follow the design phase.

• Creates intellectual model of how the system is structured and how the components
function together in the system.

Currently, representations of software architecture are informal and ad-hoc. While
architectural concepts are often embodied in infrastructure to support specific architectural
styles and in the initial conceptualisation of a system configuration, the lack of an explicit
independently characterised architecture significantly limits the benefits of this design concept
in the present scenario. Note that software architecture comprises of two elements of
design model: data design and architectural design. Both these elements have been discussed
later in the chapter.
(c) Patterns: A pattern describes a problem, which occurs over and over again in our
environment, and then describes a solution to that problem, such that the solution can be
used again and again. Thus, each pattern represents a reusable solution to a recurring
problem. The term pattern has been adopted in software from the work of the architect,
Christopher Alexander, who explored patterns in architecture.

(d) Types of Design Patterns: Patterns are used once the analysis model is developed.
Patterns reflect low-level strategies for design of components in the system and high-
level strategies, which impact the design of the overall system. Patterns are divided into
the following three categories:

• Architectural patterns: These patterns are high-level strategies that are concerned
with large-scale components and global properties and mechanisms of a system. It
provides a set of predefined subsystems, specifies their responsibilities, and includes
rules and guidelines for organizing the relationship between them. Note that architectural
patterns often equate to software architecture and generally affect the overall structure
and the organization of a software system.

• Design patterns: These patterns are medium-level strategies that are used to solve
design problems. They provide a scheme for refining the subsystems or components of
a software system, or the relationship between them. It addresses a specific element of
the design such as relationship among components or mechanisms that affect component-
to-component interaction. Note that design patterns often equate to software components.

• Idioms: These patterns are low-level patterns, which are specific to a programming
language. An idiom describes how to implement particular aspects of components using
the features of the given language. Software components are binary units of independent
production, acquisition, and deployment that interact to form a functioning program.
Note that software components often equate to design patterns with emphasis on
reusability.

The difference between these three kinds of patterns mentioned above is according to their
corresponding levels of abstraction. Architectural patterns are high-level strategies that

Software Engineering

118 Self-Instructional Material

NOTES

concern large-scale components, global properties, and the mechanisms of a system. Design
patterns are a medium-scale strategy that elaborates some of the structure and behaviour of
entities and their relationships. Idioms are paradigm-specific and language specific
programming techniques that fill in low-level internal or external details of the structure or
the behaviour of the component.

(e) Modularity: Software architecture and design patterns represent modularity. Modularity
is achieved by dividing the software into uniquely named and addressable components,
which are also known as modules. The basic idea underlying modular design is to organize
a complex system (large program) into a set of distinct components, which are developed
independently and then are connected together. This may appear as a simple idea however,
the effectiveness of the technique depends critically on the manner in which the systems
are divided into components and the mechanisms used to connect components together.

Global
Data

Main Program

Function

Function

Function

Function

Module Data

Function

Function

Function

Function

Module Data

Figure 4.2 Modules in Software Programs

Modularising a design helps to plan the development in a more effective manner,
accommodate changes easily, conduct testing and debugging effectively and efficiently,
and conduct maintenance work without adversely affecting the functioning of the software.
Module-level design also referred as procedural design or component-level design is discussed
in detail in Section 4.4.

(f) Information Hiding: Modules should be specified and designed in such a way that
information contained within one module is inaccessible to other modules that do not require
such information. The way of hiding unnecessary details is referred to as information
hiding. IEEE defines information hiding as “the technique of encapsulating software design
decisions in modules in such a way that the module’s interfaces reveal little as possible
about the module’s inner workings; thus each module is a ‘black box’ to the other modules
in the system”.

Information hiding is of immense use when modifications are required during testing and
maintenance phase. In object-oriented design, information hiding gives rise to the concepts
of encapsulation and modularity, and is associated with the concept of abstraction.

Software Design

Self-Instructional Material 119

NOTES

Clients

Module

Controlled
Interface

“Secret” A Specific
Design Decision

Algorithm

Data Structure

Details of External Interface

Resource Allocation Policy

Figure 4.3 Information Hiding

Some of the advantages associated with information hiding are listed below:
• Leads to low coupling.
• Emphasises communication through controlled interfaces.
• Reduces the likelihood of adverse effects.
• Limits the global impact of local design decisions.
• Results in higher quality software.

(g) Stepwise Refinement: Stepwise refinement is a top-down design strategy used for
decomposing a system from a high level of abstraction into a more detailed level (lower
level) of abstraction. At the highest level of abstraction, function or information is defined
conceptually without providing any information about the internal workings of the function
or internal structure of the data. As we proceed towards the lower levels of abstraction,
more and more details are available.

Software designers start the stepwise refinement process by creating a sequence of
compositions for the system being designed. Each composition is more detailed than the
previous one and contains more components and interactions. The earlier compositions
represent the significant interactions within the system, while the later compositions show
in detail how these interactions are achieved.
To have a clear understanding of the concept, let us consider an example of stepwise
refinement. Every computer program comprises of inputs, process, and output.
• INPUT

Get user’s name (string) through a prompt
Get user’s grade (integer from 0 to 100) through a prompt and validate

• PROCESS
• OUTPUT
This is the first step in refinement. The input phase can be refined further as follows.
• INPUT

Get user’s name through a prompt
Get user’s grade through a prompt
While (invalid grade)
Ask again

• PROCESS
• OUTPUT

Note: Stepwise refinement can also be performed for PROCESS and OUTPUT phase.

Software Engineering

120 Self-Instructional Material

NOTES

(h) Refactoring: Refactoring is an important design activity that simplifies design of a
module without changing its behaviour or function. Refactoring can be defined as a process
of modifying a software system to improve the internal structure of the design without
changing its external behaviour. During refactoring process, the existing design is checked
for unused design elements, redundancy, inefficient or poorly constructed algorithms and
data structures, or any other flaws in the existing design that can be improved to yield a
better design. For example, a design model might yield a component, which exhibits low
cohesion (like a component performs only four functions that have a limited relationship
with one another). Software designers may decide to refactor the component into four
different components, each exhibiting high cohesion. This results in software that is easier
to integrate, test, and maintain.

(i) Structural Partitioning: When the architectural style of a design follows a hierarchical
nature, the structure of the program can be partitioned either horizontally or vertically. In
horizontal partitioning, the control modules (shaded boxes in Figure 4.4 (a)) are used to
communicate between functions and execute the functions. Structural partitioning provides
the following benefits:

• Results in software that is easier to test and maintain.
• Results in less propagation of adverse affects.
• Results in software that is easier to extend.
However, the disadvantage of using horizontal partitioning is that more data has to be
passed across module interface. This complicates the overall control flow of the problem
especially while processing rapid movement from one function to another.

Function 2

Function 1 Function 3

(a) Horizontal Partitioning

Decision-making
Modules

“Worker”
Modules

(b) Vertical Partitioning

Figure 4.4 Horizontal and Vertical Partitioning

In vertical partitioning, the control (decision-making) modules are located at the top and
work is distributed in a top-down manner. That is, top-level modules perform control
function and do little processing, while low-level modules perform all input, computation
and output tasks.

4.2.3 Developing a Design Model
To develop a complete specification of design (design model), four elements are used.
These are:

• Data design: Creates data structure by converting data objects specified during analysis
phase. The data objects, attributes, and relationships defined in entity relationship diagrams
provide the basis for data design activity. Various studies suggest that design engineering
should begin with data design, since this design lays the foundation for all other design
elements.

• Architectural design: Specifies the relationship between structural elements of software,
design patterns, architectural styles, and the factors affecting the way in which
architecture can be implemented.

Check Your Progress
1. Define software design.
2. Define abstraction.
3. Define software

architecture.
4. Describe modularity.

Software Design

Self-Instructional Material 121

NOTES

• Component-level design/Procedural design: Converts the structural elements of
software architecture into a procedural description of software components.

• Interface design: Depicts how software communicates with the system that
interoperates with it and with the end-users.

Interface Design

ProceduralDesign
Proce

du
ral

Desig
n

Int
erf

ace Desig
n

ArchitecturalDesign Archite
ctu

ral

Design

Data
Design

Data

Desig
n

Figure 4.5 Design Model and its elements

4.3 DATA DESIGN

Data design is the first of the design activities, which leads to better program structure,
effective modularity, and reduced complexity. Data design is developed by transforming
the data dictionary and entity relationship diagram (identified during the requirements phase)
into data structures that are required to implement the software. The data design process
includes identifying the data, defining specific data types and storage mechanisms, and
ensuring data integrity by using business rules and other run-time enforcement mechanisms.

The selection process may involve algorithmic analysis of alternative structures in order to
determine the most efficient design or the use of a set of modules that provides operations
on some representation of objects. Some principles are followed while specifying the data,
which are listed below:

• All data structures and the operations to be performed should be identified.
• Data dictionary should be established and used.
• Low-level data design decisions should be deferred until late in the design process.
• The representation of data structure should be known to only those modules that directly

use the data.
• A library of useful data structure and the operations that may be applied to them should

be developed.
• Language should support abstract data types.

The structure of data can be viewed at three levels, namely, program component level,
application level, and business level. At the program component level, the design of data
structures and the algorithms required to manipulate them is necessary if a high-quality
software is desired. At the application level, the translation of a data model into a database
is essential to achieve the specified business objectives of a system. At the business level,
the collection of information stored in different databases should be reorganised into data
warehouse, which enables data mining that has influential impact on the business.

Note: Data design helps to represent the data component in the conventional systems and
class definitions in object-oriented systems.

Check Your Progress

5. What is data design?
6. Explain the levels at which

structure of data can be
viewed.

Software Engineering

122 Self-Instructional Material

NOTES

4.4 ARCHITECTURAL DESIGN

Requirements of the software should be transformed into an architecture that describes
software’s top-level structure and identifies its components. This is accomplished through
architectural design (also called system design), which acts as a preliminary ‘blueprint’
from which software can be developed. IEEE defines architectural design as “the process
of defining a collection of hardware and software components and their interfaces to establish
the framework for the development of a computer system”. This framework is established
by examining the software requirement document and building a physical model using
recognised software engineering methods.

The physical model describes the solution in concrete and implementation terms, which is
used to produce a structured set of component specifications (each specification defines
the functions, inputs and outputs of the component) that are consistent, coherent and
complete. An architectural design performs the following functions:

• Provides a level of abstraction at which the software designers can specify the system
behaviour (such as function and performance).

• Serves as the ‘conscience’ for a system as it evolves. By characterizing the crucial
system design assumptions, a good architectural design guides the process of system
enhancement indicating what aspects of the system can be easily changed without
compromising system integrity.

• Evaluates all top-level designs.
• Develops and documents top-level design for the external and internal interfaces.
• Develops preliminary versions of user documentation.
• Defines and documents preliminary test requirements and the schedule for software

integration.

Architectural design is derived from the following sources:

• Information regarding the application domain for the software to be developed.
• Using data flow diagrams.
• Availability of architectural patterns and architectural styles.

Architectural design occupies a pivotal position in software engineering. It is during
architectural design that crucial requirements, such as performance, reliability, costs, and
more are addressed. This task is cumbersome as the software engineering paradigm is
shifting from monolithic, stand-alone, built-from-scratch systems to componentised,
evolvable, standards-based, and product line oriented systems. Also, one key challenge for
designers is to know precisely how to proceed from requirements to architectural design.
To avoid all these problems, designers adopt strategies such as reusability, componentisation,
platform-based, standards-based, and so on.

While the architectural design is the responsibility of developers, participants in the
architectural design phase should also include user representatives, systems engineers,
hardware engineers, and operations personnel. In reviewing the architectural design, project
management should ensure that all parties are consulted in order to minimise the risk of
incompleteness and error.

4.4.1 Architectural Design Representation
Architectural design can be represented using various models, which are listed below:

• Structural model: Illustrates architecture as an ordered collection of programs
components.

Software Design

Self-Instructional Material 123

NOTES

• Framework model: Attempts to identify repeatable architectural design patterns, which
are encountered in similar types of application. This leads to an increase in the level of
abstraction.

• Dynamic model: Specifies the behavioural aspect of the software architecture and
indicates how the structure or system configuration changes as the function changes
due to change in external environment.

• Process model: Focuses on the design of the business or technical process, which
must be implemented in the system.

• Functional model: Represents functional hierarchy of a system.

Architectural Design Output: The output of the architectural design process is an
architectural design document (ADD), which consists of a number of graphical
representations that consist of software models along with associated descriptive text.
These models include static model, an interface model, a relationship models, and a dynamic
process model that shows how the system is organized into process at run-time. This
document gives the developers’ solution to the problem stated in the software requirements
specification (SRS) but avoids the detailed consideration of software requirements that do
not affect the structure. In addition to ADD, other outputs of the architectural design are:

• Progress reports, configuration status accounts and audit reports.
• Various plans for detailed design phase, which includes:

Software project management plan.
Software configuration management plan.
Software verification and validation plan.
Software quality assurance plan.

4.4.2 Architectural Styles
Architectural styles define a family of systems in terms of a pattern of structural organization.
It also characterises a family of systems that are related by sharing structural and semantic
properties. In short, the objective of using architectural styles is to establish a structure for
all the components present in a system. If an existing architecture is to be reengineered,
then imposition of an architectural style results in fundamental changes in the structure of
the system. This change also includes reassignment of the functionality performed by the
components.

By constraining the design space, an architectural style often permits specialised and style-
specific analyses. Also, an architectural style makes it easier for other stakeholders to
understand a system’s organization if conventional structures are used.

Computer-based system (software is part of this system) exhibits one of the many available
architectural styles. Each style describes a system category that includes the following:

• Computational components (such as clients, server, filter, database) that perform a
function required by the system.

• A set of connectors that enable interactions and co-ordination among these components
(such as procedure call, events broadcast, database protocols, and pipes).

• Constraints that define integration of components to form a system.
• Semantic model, which enables software designer to understand the overall properties

of a system by analysing the known properties of its constituent parts.
Some of the commonly used architectural styles are data-flow architecture, object-oriented
architecture, layered system architecture, data-centered architecture, and call and return
architecture. Note that the use of an appropriate architectural style promotes design reuse,
leads to code reuse, and supports interoperability.

Software Engineering

124 Self-Instructional Material

NOTES

(a) Data-flow Architecture: A data-flow architecture is used when input data is transformed
through series of computational component in order to produce the output data. Each
component has a set of input and output terminals. A component reads a stream of data on
its input terminal and produces a stream of data on its output terminal. Input is transformed
both locally and incrementally so that output begins before input is consumed. In this type
of style, components are called filters and connectors’ conduits for the information streams
are termed as pipes.

Filter Filter

Filter Filter

Filter

Filter Filter Filter

Filter

Filter

Filter FilterFilterFilter

Pipes

(a) Pipes and Filters

(b) Batch Sequential

Figure 4.6 Dataflow Architecture

Each filter works as an independent entity, which may not know the identity of upstream or
downstream filters. They may specify input format and guarantee what appears as an
output, but they may not know which components appear at the ends of those pipes. A
degenerated version occurs when each filter processes all of its input as a single entity.
This is known as batch sequential system. In these systems, pipes no longer provide a
stream of data. The best-known example of data flow architectures is Unix shell programmes
where components are represented as Unix processes and pipes are created through the file
system. Other examples include compilers, signal-processing systems, parallel programming,
functional programming, and distributed systems. Some advantages associated with the
data-flow architecture are listed below:

• Supports reusability.
• Easy to maintain and enhance.
• Supports specialised analysis and concurrent execution.
Some disadvantages associated with the data-flow architecture are listed below:

• Often lead to batch organization of processing.
• Poor for interactive applications.
• Difficult to maintain synchronisation between two related streams.
(b) Object-oriented Architecture In object-oriented architectural style, components of a
system encapsulate data and operations, which are applied to manipulate the data. The
components of this style are the objects and connectors, which operate through procedure
calls (methods). This architectural style has two important characteristics:

• Objects are responsible for maintaining the integrity of a resource.
• Representation of the object is hidden from other objects.

Software Design

Self-Instructional Material 125

NOTES

Some of the advantages associated with object-oriented architecture are listed below:

• Hidden implementation details allow object to be changed without affecting the accessing
routine of other objects.

• Data allows designers to decompose problems into collections of interacting agents.
(c) Layered Architecture: A layered architecture is organised hierarchically with each layer
providing service to the layer above it and serving as a client to the layer below it. In some
systems, inner layers are hidden from all, except the adjacent outer layer. In this type of
architectural style, connectors are defined by the protocols that determine how layers will
interact. An example of this architectural style is the layered communication protocols
OSI-ISO (open systems interconnection-international organization for standardization)
communication system. In these systems, lower levels describe hardware connections and
higher levels describe application. Layered systems support designs based on increasing
levels of abstraction.

Application Layer
Presentation Layer

Session Layer

Transport Layer

Network Layer

Datalink Layer

Physical Layer

Application Layer

Transport Layer

Network Layer

Physical Layer

Figure 4.7 OSI and Internet Protocol Suite

(d) Data-centered Architecture: A data-centered architecture has two distinct components:
a central data structure or data store (central repository), which represents the current
state and a collection of independent components (client software), which operate on
the data-store (like a database or a file). The client software accesses the data independent
of any changes to the data or the actions of other client software.

In this architectural style, existing components can be deleted and new clients can be added
to the architecture without affecting the overall architecture. This is because client
components operate independently.

Control methods for these systems are of two types.

• If input transactions select the processes to execute, then a traditional database is used
as a repository.

• If the state of the data-store is the main trigger for selecting processes, then the repository
is a blackboard. Blackboard systems have been used for applications that require complex
interpretation of signal processing for example, speech recognition and in web-based
applications. A blackboard model usually has three components:

Knowledge source: Contains independent pieces of application specific knowledge.
Interaction between knowledge sources takes place only through the blackboard.
Blackboard data structure: Stores data in an organized way, into an application-
depen dent hierarchy. Knowledge sources make changes to the blackboard that
lead incrementally to a solution of a problem.
Control: Driven by the state of the blackboard. Knowledge sources respond
opportunistically when changes in the blackboard make them applicable.

Software Engineering

126 Self-Instructional Material

NOTES

Client Software

Client SoftwareClient Software

Client Software Client Software

Client Software

Client Software Client Software
Data Store
(Repository

or
Blackboard)

Figure 4.8 Data-centered Architecture

Some of the advantages of data centered system are listed below:

• Clients are relatively independent of each other.
• Data store is independent of the clients.
• Adds scalability (that is, new clients can be added easily).
• Supports modifiability.
• Achieves data integration in component-based development using blackboard.

(e) Call and Return Architecture: A call and return architecture enables software designers
to achieve a program structure, which can be easily modified. This style consists of the
following two substyles:

• Main program/subprogram architecture: In this, function is decomposed into a control
hierarchy where the main program invokes a number of program components, which in
turn may invoke other components.

Main
Program

Controller
Subprogram

Controller
Subprogram

Controller
Subprogram

Application
Subprogram

Application
Subprogram

Application
Subprogram

Application
Subprogram

Application
Subprogram

Application
Subprogram

Application
Subprogram

Figure 4.9 Main program/subprogram architecture

• Remote procedure call architecture: In this, components of main or sub program
architecture are distributed over a network across multiple computers.

Check Your Progress
7. Define architectural

design.
8. List the advantages of

object-oriented
architecture.

9. Mention the subtypes of
call and return architecture
style.

Software Design

Self-Instructional Material 127

NOTES

4.5 PROCEDURAL DESIGN

As soon as first iteration of architectural design is complete, component-level design also
called procedural design takes place. Component-level design is created by transforming
the structural elements defined by the software architecture into procedural descriptions of
software components. These components are derived from the analysis model where data
flow-oriented element (present in the analysis model) serves as the base for the derivation.
Component also known as module, resides within the software architecture and serves one
of the three roles listed below:

• A control component, which coordinates the invocation of all other components present
in the problem domain.

• A problem domain component, which implements a complete or partial function as
required by the user.

• An infrastructure component supports functions, which in-turn supports the processing
required in the problem domain.

Component-level design is used to define the data structures, algorithms, interface description,
and communication mechanisms allocated to each module. Note that a module or a component
can be defined as a modular building block for the software. However, meaning of component
differs according to how software engineers use it. The modular design of the software
should exhibit the following sets of properties:

• Provide simple interface: Simple interfaces reduce the number of interactions that
must be considered when verifying that a system performs its intended function. Simple
interfaces also make it easier to reuse components in different circumstances. Reuse is
a major cost saver. Not only does it reduce the time spent in coding, design, and testing
but also allows development costs to be amortised over many projects. Numerous
studies have shown that reusing software design is by far the most effective technique
for reducing software develop ment costs.

• Ensure information hiding: The benefits of modularity automatically do not follow
the act of subdividing a program. Each module should encapsulate information that is
not available to the rest of a program. This reduces the cost of subsequent design
changes. For example, a module may encapsulate related functions that can benefit
from a common implementation or that are used in many parts of a system.

Modularity has become an accepted approach in every engineering discipline. With the
introduction of modular design, complexity of software design has considerably reduced;
change in the program is facilitated that has encouraged parallel development of systems.
To achieve effective modularity, design concepts like functional independence are considered
to be very important.

4.5.1 Functional Independence
Functional independence is the refined form of the design concepts of modularity, abstraction,
and information hiding. Functional independence is achieved by developing a module in
such a way that uniquely performs given sets of function without interacting with other
parts of the system. Software that uses property of functional independence is easier to
develop because its function can be categorised in a systematic manner. Moreover,
independent modules require less maintenance and testing activity as secondary effect
caused by design modification are limited with less propagation of errors. In short, it can
be said that functional independence is a key to a good software design and a good design
results in high quality software.

Software Engineering

128 Self-Instructional Material

NOTES

There exist two qualitative criteria for measuring functional independence, namely, coupling
and cohesion. Coupling is a measure of relative interconnection among modules whereas
cohesion measures the relative functional strength of a module.

Timing Chain

Carnshaft

Valve

Crankshaft

Piston

Engine Block

Oil Filter

Spark Plug

Alternator

Cylinder Head

Internal Combustion Engine Module

Woofer

Subwoofer

Tweeter Amplifier

Midrange

Crossover

Tuner

Antenna

Equalizer

Power Connector

Compact Disk Player

Cohesion

Coupling

Audio System Module

Figure 4.10 Coupling and Cohesion

(a) Coupling: Coupling is the measure of interdependence between one module and another.
Coupling depends on the interface complexity between components, the point at which
entry or reference is made to a module, and the kind of data that passes across an interface.
For better interface and well-structured system, modules should have low coupling, which
minimises the ‘ripple effect’ where changes in one module cause errors in other modules.
Module coupling is categorised into the following types.

• No direct coupling: Two modules are no direct coupled when they are independent of
each other. In Figure 4.11, Module 1 and Module 2 are no directly coupled.

• Data coupling: Two modules are data coupled if they communicate by passing
parameters. In Figure 4.11, Module 1 and Module 3 are data coupled.

Module 4

Module 3

Module 1

Module 2

No direct
coupling

Data passed
via argument list
(data coupling)

Data structure
passed via argument list

(stamp coupling)

Figure 4.11 No Direct, Data, and Stamp Coupling

Software Design

Self-Instructional Material 129

NOTES

• Stamp coupling: Two modules are stamp coupled if they communicate through a
passed data structure that contains more information than necessary for them to perform
their functions. In Figure 4.11, data structure is passed between modules 1 and 4.
Therefore, Module 1 and Module 4 are stamp coupled.

• Control coupling: Two modules are control coupled if they communicate (passes a
piece of information intended to control the internal logic) using at least one ‘control
flag’. The control flag is a variable that controls decisions in subordinate or superior
modules. In Figure 4.12, when Module 1 passes control flag to Module 2, Module 1 and
Module 2 are said to be control coupled.

Module 1

Module 2

Flag

A

C FlagFlag

B

Figure 4.12 Control Coupling

• Content coupling: Two modules are content coupled if one module changes a statement
in another module, one module references or alters data contained inside another module,
or one-module branches into another module. In Figure 4.13, Modules B and Module D
are content coupled.

• Common coupling: Two modules are common coupled if they both share the same
global data area. In Figure 4.13, Modules C and Module N are common coupled.

Global
Data Area

Content
Reference

A

B C

D E F

L M

N O P

Figure 4.13 Content and Common Coupling

(b) Cohesion: Cohesion is the measure of strength of the association of elements within a
module. A cohesive module performs a single task within a software procedure, which has
less interaction with procedures in other part of the program. In practice, designer should
avoid low-level of cohesion when designing a module. Generally, low coupling results in
high cohesion and vice versa. The various types of cohesion are listed below:

• Functional cohesion: In this, the elements within the modules contribute to the execution
of one and only one problem related task.

Software Engineering

130 Self-Instructional Material

NOTES
Elements or Task

Module

Figure 4.14 Functional Cohesion

• Sequential cohesion: In this, the elements within the modules are involved in activities
in such a way that output data from one activity serves as input data to the next activity.

Data Produced
by A

Data Produced
by B

Data Elements or Task

ModuleA B C

Figure 4.15 Sequential Cohesion

• Communicational cohesion: In this, the elements within the modules perform different
functions, yet each function references the same input or output information.

Data Elements or Task

ModuleA B C

Data Shared by
Elements A, B and C

Figure 4.16 Communicational Cohesion

• Procedural cohesion: In this, the elements within the modules are involved in different
and possibly unrelated activities.

Control Elements or Task

ModuleA B C

Figure 4.17 Procedural Cohesion

• Temporal cohesion: In this, the elements within the modules contain unrelated activities
that can be carried out at the same time.

Software Design

Self-Instructional Material 131

NOTES
Same Time

Elements or Task

ModuleA B C

Figure 4.18 Temporal Cohesion

• Logical cohesion: In this, the elements within the modules perform similar activities,
which are executed from outside the module.

Elements or Task

Module

Similar Activities

A B C

Figure 4.19 Logic Cohesion

• Coincidental cohesion: In this, the elements within the modules perform activities
with no meaningful relationship to one another.

Elements or Task

ModuleA B C

Figure 4.20 Coincidental Cohesion

After having discussed various types of cohesions, Figure 4.21 illustrates the procedure,
which can be used in determining the types of module cohesion for software design.

Software Engineering

132 Self-Instructional Material

NOTES

Can the Module be
considered to be Doing One
Problem-Related Function

Yes

No

Data

What Relates the Activities
Within the Module

Flow of Control Others

Is the Sequence
Important?

Is the Sequence
Important?

Are the Activities in the
same General Cateogy?

Yes No Yes No Yes No

Functional Sequential Communicational Procedural Temporal Logical Coincidental

Figure 4.21 Selection Criteria of Cohesion

4.6 USER INTERFACE DESIGN
User interfaces determine the way in which users interact with the software. The user
interface design creates effective communication medium between a human and a computing
machine. It provides easy and intuitive access to information as well as efficient interaction
and control of software functionality. For this, it is necessary for the designers to understand
what the user needs and wants from the user interface.

Minimum:

Maximum:

X Achse

Scale

52 px
12 px

Y Achse

Ticks:

6 px

Option 1

Option 1

OKCancel

Figure 4.22 Simple User Interface Design

Since user is the ‘central’ while developing the software, user interface must also be central
while designing the software. It is important to first know the person (user) for whom the
user interface is being designed before designing the user interface. Direct contact between
end-users and developers often improves the user interface design. The result of this
communication helps the designers to know user’s goals, skills, and needs.

Note: For a successful project, the overall software design and the user interface design
proceed in lockstep. That is, each step forward on one side helps to refine the other side.

Check Your Progress
10. Define procedural design.
11. Describe functional

independence.
12. Describe various roles

served by components
contained in the software
architecture.

Software Design

Self-Instructional Material 133

NOTES

4.6.1 User Interface Rules
Designing a good and efficient user interface is a common objective among software designers.
But what makes a user interface looks ‘good’? Software designers strive to achieve a good
user interface by following three rules, namely, ease of learning, efficiency of use, and aesthetic
appeal.

(a) Ease of Learning: Ease of learning describes how quickly and effortlessly users learn
to use the software. Ease of learning is primarily important for new users. However, even
experienced users face a learning experience problem when they attempt to expand their
usage of the product or when they use a new version of the software. Here, the principle
of state visualisation is applied, which states that each change in the behaviour of the
software should be accompanied by a corresponding change in the appearance of the
interface.

Developers of software applications with a very large feature set can expect only few users
to have mastered the entire feature set. Thus, designers of these applications should be
concerned about the ease of learning for otherwise experienced users. Generally to ease the
task of learning, designers make use of the tools listed below:

• Affordance: Provides clues that suggest what a machine or tool can do and how to
use it. For example, the style of a door handle on the doors of many departmental
stores, offices, and shops suggest whether to pull a door or push a door to open. If the
wrong style door handle is used, people struggle with the door. In this way, the door
handle is more than just a tool for physically helping you to open the door; it is also an
affordance showing you how the door opens. Similarly, software designers while
developing user interface should offer hints as to what each part does and how it
works.

• Consistency: Designers strive to maintain consistency within the interface. Every aspect
of the interface, including seemingly minor details, such as font usage and colours is
kept consistent when the behaviour is consistent. Here, principle of coherence (that is
behaviour of the program should be internally and externally consistent) is applied.
Internal consistency means that the program’s behaviour must make “sense” with
respect to other parts of the program. For example, if one attribute of an object (for
example, colour) is modified using a pop-up menu, then it is expected that other attributes
of the object will also be edited in a similar manner. External consistency means that
the program is consistent with the environment in which it runs. This includes consistency
with both the operating system and other suite of applications that run within that
operating system.

(b) Efficiency of Use: Once a user knows how to perform tasks, the next question is how
efficiently can the user solve problems with the software? Efficiency can be evaluated
reasonably only if users are no longer engaged in learning how to do the task and are rather
engaged in performing the task.

Defining an efficient interface requires a deep understanding of the behaviour of target
audience. How frequently do they perform the task? How frequently do they use the interface
devices? How much training do they have? How distracted are they? A few guidelines help
in designing an efficient interface.
• The task should require minimal physical actions. The desire of experienced users for

hot keys and to shortcuts to pull-down menu actions is a well-known example of reducing
the number of actions required to perform a task.

• The task should require minimal mental effort as well. A user interface, which requires
the user to remember specific details will be less popular than one that remembers those
details for the user. Similarly, an interface, which requires the user to make many

Software Engineering

134 Self-Instructional Material

NOTES

decisions, particularly non-trivial decisions, will be less popular than the one that requires
the user to make fewer or simpler decisions.

(c) Aesthetically Pleasing: Today, look and feel is one of the biggest USP (unique selling
point) while designing software. An attractive user interface improves the sales because
people like to have things that look nice. An attractive user interface makes the user feel
better (as it provides ease of use), while using the product. Many software organisations
focus specifically on designing software, which has attractive look and feel so that they
can lure customers/users towards their product(s).

In addition to the above-mentioned goals, there exist a principle of metaphor which if
applied to the software’s design result in a better and effective way of creating a user
interface. This principle states that a complex software system can be understood easily if
the user interface is created in a way that resembles an already developed system. For
example, the popular Windows operating system uses similar (not same) look and feel in all
of its operating system so that the users are able to use it in a user-friendly manner.

4.6.2 User Interface Design Process
User interface design, like all other software design elements, is an iterative process. Each
step in user interface design occurs a number of times, each elaborating and refining
information developed in the previous step. Although many different user interface design
models have been proposed, all have the following steps in common.

1. Using information stated in the requirements document, each task and actions are
defined.

2. A complete list of events (user actions), which causes the state of the user interface to
change is defined.

3. Each user action is assigned iteration.
4. Each user interface state, as it will appear (look) to the user is depicted.
5. Indicate how user interprets the state of the system using information provided through

the interface.

To sum up, the user interface design activity starts with the identification of user, task, and
environmental requirements. After this, user states are created and analysed to define a set
of interface objects and actions. These object then form the basis for the creation of screen
layout, menus, icons, and much more.

While designing the user interface, following points must be kept in mind:

• Follow the rules stated in section 4.5.1. Any interface that fails to achieve any of these
rules to a reasonable degree needs to be re-designed.

• Determine how interface will be implemented.
• Consider the environment (like operating system, development tools, display properties,

and so on).

4.6.3 Evaluating User Interface Design
User interface design process generates a useful interface, however, no designer should
expect to achieve a high quality interface on the first go. Each iteration of the steps involved
in user interface design process leads to development of a prototype. The objective of
developing a prototype is to capture the ‘essence’ of the user interface. This prototype is
evaluated, discrepancies are detected and accordingly re-design takes place. This process
carries on until a good interface evolves.
To evaluate an interface, the prototype must include the flow of the user interface and
range of options offered. The prototype does not, however, need to support the full range

Software Design

Self-Instructional Material 135

NOTES

of software behaviours. Choosing an appropriate evaluation technique helps in knowing
whether a prototype is able to achieve the desired user interface or not.
Evaluation Techniques: To provide a feedback for the next iteration, each interface must
be evaluated in some manner. This evaluation must indicate what works well with the
interface, and more importantly, what are the areas of improvement.

Some of the evaluation techniques used to evaluate the user interface design are: use it
yourself, colleague evaluation, user testing, and heuristic evaluation. Each technique offers
unique advantages and limitations. To a varying degree, they highlight ease of learning or
efficiency issues. The third goal of aesthetic pleasing largely depends on user to user and
can be best evaluated by observing what people find pleasing.

• Use it yourself: In this evaluation technique working through a number of the tasks
defined by the requirements often indicates a myriad of problems in the initial design(s).
This evaluation technique helps in identifying the entire missing pieces of the interface
and significant inefficient usage issues.

• Colleague evaluation: Since the designers are aware of the functionality of the
software, it is possible that they may miss out on issues of ease of learning and efficiency.
Showing the interface to a colleague may help in solving these issues. However, note
that unless the prototype is inherently useful in its current state, colleagues are unlikely
to use the prototype for sufficient time to discover many efficiency issues.

• User testing: This testing is considered to be the most realistic form of interface
evaluation. Users can test the prototypes, with the expected differences recorded in a
feedback. The most useful feedback is often the comments the users make to each
other as they try to understand how to accomplish the task. Before performing user
testing, the designer should choose one or more tasks that the user will be expected to
perform. Any necessary background information must be prepared in advance, with the
user having sufficient time to understand this background before beginning the test.
User testing is one of the best tools available for evaluating ease of learning. However, it
offers little or no assistance in discovering efficiency issues.

• Heuristic evaluation: Such evaluations are inherently subjective, where each evaluator
finds a different set of problems in the interface. Generally, experienced user interface
designers are able to find more errors as compared to less experienced designers. Heuristic
evaluation provides a checklist of issues, which should be considered for each iteration
of user interface design. This checklist considers the following categories:

Simple and natural dialogue: An interface provides a simple and natural dialogue if
it gently leads the user from one action to the next for common tasks.
Graphic design and colour: Consistency in the use of colour and other graphic
design elements helps the user. The colour and font can be used to convey information
subtly.
Less is more: Keep the information being presented to minimum. A cluttered interface
is both aesthetically displeasing and confusing to navigate.
Speak the user’s dialogue: Always use the user’s terminology and phrase text
from the user’s perspective. For example, messages should display “you have
purchased...” and not “we have sold you...”. When you choose terminology and
metaphors, be sure that they are consistent, both internally and with outside
expectations.
Minimize the user’s memory load: Minimize the user’s memory load by presenting
as much information as appropriate, when required by the user.
Be consistent: Consistency is one of the designer’s most desired objectives. Be
sure that similar visual descriptions for similar items are used.

Software Engineering

136 Self-Instructional Material

NOTES

Provide feedback: Always provide the user with clear feedback about what the
program is doing.
Provide shortcuts: Providing shortcuts, such as hot keys, are an important aspect
of efficiency. These shortcuts enhance the work experience for experienced users.
Provide error messages: Appropriate error messages let the user know exactly
what is wrong and how to fix it. The message should indicate which part of the input
is incorrect.

Careful evaluation under these guidelines helps in discovering most of the learning problems
and efficiency problems.

4.7 SOFTWARE DESIGN NOTATION
To represent software design, design notations are used. These notations are important as
they help designers to represent modules, interfaces, hidden information, concurrency,
message passing, invocation of operations and overall program structure in a comprehensive
manner. A design representation serves purpose to two individuals who are listed below:
• The designers themselves who try to detect missing or inconsistent aspects of a proposed

solution at the earlier stages of design.
• Other stakeholders (programmers, testers, or maintainers) who try to understand the

designer’s intent.
A good design notation helps to clarify the relationships and interactions that exist in the design,
while, a poor notation generally complicates the design process by interfering with the software
design practice. Note that a software design notation can be diagrammatic, symbolic, or textual.
The various notations that are commonly used are flow charts, data flow diagrams, structure
charts, HIPO diagram, decision table, and program design language.

4.8 SOFTWARE DESIGN REVIEWS

Software design reviews are well-documented, comprehensive, and systematic examinations
of a design used to evaluate the adequacy of the design requirements, to evaluate the
capability of the design to meet these requirements, and to identify problems. IEEE defines
software design review as “a formal meeting at which a system’s preliminary or detailed
design is presented to the user, customer, or other interested parties for comment and
approval”. These reviews are held at the end of the design phase to resolve issues (if any)
related to software-related design decisions, architectural design, and detailed design
(component-level and interface design) of the entire software or a part of it (such as a
database).

Software design reviews should include examination of development plans, requirements
specifications, design specifications, testing plans and procedures, all other documents and
activities associated with the project, verification results from each stage of the defined life
cycle, and validation results for the overall computer-based system. Note that design reviews
are considered as the best mechanism to ensure product quality and to reduce the potential
risk of avoiding the problems of not meeting the schedules and requirements.

4.8.1 Types of Software Design Reviews
Generally, the review process is carried out in three steps, which corresponds to the steps
involved in the software design process. Firstly, preliminary design review is conducted
with the customers and users to ensure that the conceptual design (this design gives an idea
to the user of what the system will look like) satisfies their requirements. Next, critical
design review is conducted with analysts and other developers to check the technical
design (this design is used by the developers to specify how the system will work) in order

Check Your Progress
13. Define user interface

design.
14. Describe the rule of

aesthetically pleasing.
15. Mention various

evaluation techniques used
to evaluate the user
interface design.

Software Design

Self-Instructional Material 137

NOTES

to critically evaluate technical merits of the design. Next, program design review is
conducted with the programmers in order to get feedback before the design is implemented.

Software Design
Reviews

Program Design
Review

Preliminary Design
Review

Critical Design
Review

Analysts and Design ersSo
ftw

ar
e

Pr
og

rammers

Customers and Users

Figure 4.23 Types of Design Reviews

(a) Preliminary Design Review The preliminary design review is a formal inspection of
the high-level architectural design of the software, which is conducted to verify that the
design satisfies the functional and non-functional requirements and is in conformance with
the requirements specified by the users. The purpose is to:

• Ensure that software requirements are reflected in the software architecture.
• Specify whether effective modularity is achieved or not.
• Define interfaces for modules and external system elements.
• Ensure that the data structure is consistent with information domain.
• Ensure that maintainability has been considered.
• Assess the quality factors.

In this review it is verified that the proposed design includes the required hardware and
interfaces with the other parts of the computer-based system. To conduct a preliminary
design review, a review team is formed where each review team member acts as an
independent person authorised to make necessary comments and decisions. This review
team comprises of individuals listed below:

• Customers: Responsible for defining the software’s requirements.
• Moderator: Presides over the review. The moderator encourages discussions, maintains

the main objective throughout the review, settles disputes and gives unbiased observations.
In short, moderator is responsible for smooth functioning of the review.

• Secretary: Secretary is a silent observer who does not take part in the review process
but instead records the main points of the review.

• System designers: These include persons involved in designing of not only the software
but also the entire computer-based system.

• Other stakeholders (developers) not involved in the project: These people provide
an outsider’s idea on the proposed design. This is beneficial as these people can advise
‘fresh’ ideas, address issues of correctness, consistency, and good design practice.

If any discrepancies are noted in the review process then the faults are assessed on the
basis of its severity. That is, if there exists a minor fault then the fault is resolved among the
review team. However, if there exists a major fault, then the review team may agree to

Software Engineering

138 Self-Instructional Material

NOTES

revise the proposed conceptual design. Note that preliminary design review is again
conducted to assess the effectiveness of the revised (new) design.

(b) Critical Design Review: Once the preliminary design review is successfully completed
and the customer(s) is satisfied with the proposed design, critical design review is conducted.
The purpose of this review is to:

• Ensure that the conceptual and technical designs are free of defects.
• Determine that the design under review satisfies the design requirements established in

the architectural design specifications.
• Critically assess the functionality and maturity of the design.
• Justify the design to outsiders so that the technical design is more clear, effective and

easy to understand.

In this review, diagrams and data are used (sometimes both) to evaluate the alternative
design strategies and how and why the major design decisions have been taken. Just like
the preliminary design review, to carry out critical design review a review team is formed.
In addition to the team members involved in preliminary design review, this team also
comprises of individuals listed below:
• System tester: Understands the technical issues of design and compares with design

created for similar projects
• Analyst: Responsible for writing system documentation.
• Program designers for this project: Understands the design in order to derive detailed

program designs.

Note: This review does not involve customers.

Similar to preliminary design review if any discrepancies are noted in the critical design
review process then the faults are assessed on the basis of its severity. A minor fault is
resolved among the review team. While if there exist a major fault, then the review team
may agree to revise the proposed technical design. Note that critical design review is again
conducted to assess the effectiveness of the revised (new) design.

(c) Program Design Review: On successful completion of critical design review,
program design review is conducted to get feedback on the designs before implementation
(coding) begins. This review is conducted between the designers and developers with the
purpose to:
• Ensure that the detailed design is feasible.
• Ensure that the interface is consistent with architectural design.
• Specify whether design is amenable to implementation language.
• Ensure that structured programming constructs are used throughout.
• Ensures that the implementation team will be able to understand the proposed design.

To conduct a program design review, a review team is formed, which comprises of system
designers, system tester, moderator, secretary, and analyst. In addition, the review team
includes program designers, and developers. The program designers after completing the
program designs present their plans to a team of other designers, analysts, and programmers
for comment and suggestions. Note that a successful program design review presents
considerations relating to coding plans before coding begins.

4.8.2 Software Design Review Process
Design reviews are considered important as in these reviews the product is logically viewed
as the collection of various entities/components and various use cases. These reviews
occur at all levels of the software design from top-level through detailed, and encompass

Software Design

Self-Instructional Material 139

NOTES

through all parts of the software units. Generally, the review process comprises of three
criteria’s, which are listed below:

• Entry criteria: Software design is ready for review.

• Activities: This criteria involves steps listed below:

1. Select software design review team participants, assign roles, and prepare schedule
for the review.

2. Distribute software design review package to all the reviewing participants.
3. Participants assess compliance with requirements, completeness, efficiency, and

adherence to design methodology. Participants identify and discuss defects. Recorder
documents defects, action items, and recommendations.

4. Software design team corrects any defects in design and updates design review
material as required.

5. The software development manager obtains the approval of the software design
from the software project manager.

• Exit criteria: Software design is approved.

4.8.3 Evaluating Software Design Reviews
The software design review process is beneficial for everyone as the faults can be detected
at the earlier stage thereby reducing the cost of detecting errors and reducing the likelihood
of missing a critical issue. Every review team member examines the integrity of the design
and not the persons involved in it (that is designers), which in-turn emphasises that the
common objective of developing a high rated design is achieved. To check the effectiveness
of the design, the review team members should address the questions listed below:

• Is the solution achieved with the developed design?
• Is design reusable?
• Is design well structured, and easy to understand?
• Is design compatible with other platforms?
• Is it easy to modify or enlarge the design?
• Is the design well documented?
• Does the design use suitable techniques in order to handle faults and prevent failures?
• Does the design reuse component from other projects, wherever necessary?

In addition to the above-mentioned questions, if the proposed system is developed using a
phased development (like waterfall model), then the phases should be interfaced sufficiently
so that easy transition takes place from one phase to the other.

4.9 SOFTWARE DESIGN DOCUMENTATION (SDD)

IEEE defines software design documentation as “a description of software created to facilitate
analysis, planning, implementation, and decision making. This design description is used
as a medium for communicating software design information, and can be considered as a
blueprint or model of the system”.

While developing SDD, engineers should describe the design in sufficient detail that no
further refinement of the tasks, databases, inter-task communications, libraries, module
structure and interfaces, data structures, and databases is required in the code.

The information to be included in software design document depends on a number of
factors, such as the type of software being developed and the approach used in its

Software Engineering

140 Self-Instructional Material

NOTES

development. A number of standards have been suggested to develop software design
document, however, the most widely used standard is by IEEE (see Figure 4.24), which
acts as a general framework. This general framework can be customised and adapted to
meet the needs of a particular organization.

1. Scope

2. References

3. Definition

4. Purpose of an SDD

5. Design Description Information Content
5.1 Introduction
5.2 Design entity
5.3 Design entity attributes

5.3.1 Identification
5.3.2 Type
5.3.3 Purpose
5.3.4 Function

5.3.6 Dependencies
5.3.7 Interface
5.3.8 Resources
5.3.9 Processing
5.3.10 Data

6. Design Description Organisation
6.1 Design views

6.1.1 Decomposition description
6.1.2 Dependency description
6.1.3 Interface description
6.1.4 Detailed design description

Annex A Sample table of contents for an SDD

Annex B Guidelines for compliance with IEEE/EIA 12207.1-1997

5.3.5 Subordinates

Figure 4.24 Software Design Description

The SDD consist of several sections, which are discussed below:

• Scope: Identifies the release or version of the system being designed. The system is
divided into modules; relationship between them and functionalities will be defined.
Each iteration of the SDD document describes and identifies the software modules to
be added or changed in a release.

• References: Lists references (both hardware and software documents and manuals)
used in the creation of the SDD that may be of use to the designer, programmer, and
user or to management personnel. This document is also considered useful for the
readers of the document. In this section, any references made to the other documents
including references to related project documents, especially the SRS is also listed. In
addition, the existing software documentation (if any) is also listed.

• Definition: Provides a glossary of technical terms used in the document along with
their definitions.

• Purpose: States the purpose of this document and its intended audience. This is primarily
meant for the individuals who will be implementing the system.

• Design description information content: Consists of the sub-sections listed below:

Introduction: Since SDD is a representation of the design to be implemented, it
should partition the system into design entities and describe the important properties
and relationship among those entities.

Software Design

Self-Instructional Material 141

NOTES

Design entity: A design entity is a component of a design that is different in terms
of structure and functions. The objective of creating design entities is to divide the
system into separate components that can be considered, changed, and implemented.
Each design entity posses a unique name, purpose, and function but have common
characteristics.

Design entity attributes: A design entity attribute is a property of the design entity,
which provides factual information regarding the entity. Every attribute has an attached
description, which includes references and design considerations. The attributes and
their associated information are listed in Table 4.1.

Table 4.1 Attributes and Description

Attributes Description

Identification Identifies name of the entity. All the entities have a unique name.

Type Describes the kind of entity. This specifies the nature of the entity.

Purpose Specifies why the entity exists.

Function Specifies what the entity does.

Subordinates Identifies subordinate entity of an entity.

Dependencies Describes relationships that exist between one entity and other entities.

Interface Describes how entities interact among themselves.

Resources Describes elements used by the entity that are external to the design.

Processing Specifies rules used to achieve the specified functions.

Data Identifies data elements that form part of the internal entity.

• Design description organization: Consists of the following sub-section:

Design views: Design views provide a comprehensive description of the design in
a concise and usable form that simplifies information access and assimilation. There
exist a number of ways to view the design where every design view represents a
distinct concern about a system. The various design views and their attributes are
listed in Table 4.2.

Table 4.2 Design views and their description

Design View Description Attribute

Decomposition description Partitions the system into design Identification, type, purpose,
entities function, and subordinate

Dependency description Describes relationships between Identification, type, purpose,
entities. dependencies, and resources

Interface description Consists of list that is required by Identification, function, and
the stakeholders (designers, develo- interfaces
pers and testers) in order to design
entities.

Detail description Describes internal details of the Identification, processing, and data
design entity.

Software Engineering

142 Self-Instructional Material

NOTES

4.10 CASE STUDY: HIGHER EDUCATION ONLINE
LIBRARY SYSTEM

The objective of the Higher Education online library system is to provide an efficient,
modular design that will reduce the system’s complexity, facilitate change, and result in an
easy implementation. This can be accomplished by designing a strongly cohesion system
with minimal coupling. Also, the system will provide interface design models that are
consistent, user friendly, and will provide straightforward transitions through the various
system functions.

The Higher Education system is developed keeping in mind current and forthcoming
technologies. The Internet must be able to communicate with a browser client in HTML,
ASP as well as JavaScript. The server must run on a Windows 2000 server, or higher. The
client’s computer must have Windows XP operating system. The entire structure of the
design of the online library system is given below in Table 4.3.

Table 4.3 Design Structure of Online Library System

Design Description

Data design Includes an enhanced ERD as well as the data object design and the data
file design.

System architecture design Includes detailed diagrams of the system, server, and client architecture.

Procedural design Includes the functional partitioning from the requirements specifications
document, and goes into great detail to describe each function (module/
component).

User interface design Includes the graphical user interfaces that will be seen by the user when
operating the Higher Education online library system.

4.10.1 Data Design
The data object USER ACCOUNT contains four types of users: STUDENT, FACULTY,
LIBRARY STAFF, and ADMINISTRATOR. All of these accounts type have an inheritance
relationship with the USERACCOUNT data object. MEDIA RESOURCES is the central
data object and has objects related by both inheritance and association. The data object
BOOKS, MAGAZINES/PERIODICALS, and MULTI-MEDIA are all types of MEDIA
RESOURCES (inheritance). All other data objects are related to MEDIA RESOURCES by
association.

Data Objects: The various data objects that make up the online library system are listed
below:

• Student object: Associates with book and multi-media object when items are checked
out or reserved.

• Faculty object: Contains information such as the faculty’s full name, social security
number, PIN number, e-mail address, and so on. This object associates book and multi-
media object when items are checked out or reserved.

• Library Staff object: Represents a staff member in the user database object.
• Administrator object: Represents an administrator.
• Book object: Represents a book in the media database. This object is updated when a

book is issued, returned, or reserved.
• Status object: Associates the book and user objects.

Software Design

Self-Instructional Material 143

NOTES

• User Database object: Maintains data for the all user types in the database.
• Multi-media object: Contains information about a multi-media item including title and

subject and provides a unique index number, which serves as a primary key in the
database.

4.10.2 Architectural Design
The Higher Education system is a client-server based system, which contains a number of
layers namely, user interface, internet/local area network (LAN) communication, functional
service, and data storage layers. Data transfers occur in both directions in the system. The
users input or data request is sent using either an Internet browser or through the Windows
client. This data then connects to the system either through the internet or, in the case of an
onsite connection, through the LAN connection of an internet connection, the data is required
to pass through the system’s firewall, for security purposes, prior to connecting to the web
server. Local personnel, once validated within the system, will be connected directly to the
application server. In the functional services layer, the data input or request is routed to the
appropriate functional module in accordance with the user’s login and account type. Through
these modules, the users will interact with the database through the SQL server.

SQL Database
Data Storage Layer

Functional Service
Layer

Student
Function

Faculty
Function

Staff
Function

Administrative
Function

Communication
Layer

Web Server Application
 Server

Firewall

Internet

LAN
Internet Layer

User Interface Layer
HTML/JavaScript

ASP (Browser) TCP/IP

(Windows Client)

Remote User Local User

Figure 4.25 System Architecture

Software Engineering

144 Self-Instructional Material

NOTES

(a) Server Architecture: The server architecture contains two logical servers namely web
server and application server. Web server will interface with remote users, while the
application server will interface with local users. The web server will communicate using
active server pages (ASP) and hypertext markup language (HTML) as shown in the
communication interface block within the following diagram. While, application server will
communicate with local users through transmission control protocol (TCP)/internet protocol
(IP). Both logical servers will have common functionality in order to facilitate all users, and
will interact with the database through structured query language (SQL)/application
programming interface (API).
(b) Client Architecture: The client architecture is available for the Microsoft Windows
only. Client architecture resides above the Windows API layer, which interfaces with the
operating system. Utility functions include print, tool bar, and help functions.

4.10.3 Procedural Design
When examining an existing information system or analyzing the information that is going
to be designed, it is important to recognize what the data is, where the data comes from,
how it passes from one point to another within the information system, and how it will be
used by the intended audience or user. The following data flow diagrams (DFDs) represent
the movement of data within the system. They concentrate less on the actual functions and
data constructs of programmers and more on the general processes inherent to the overall
system. Note that the amount of detail specified in this case study includes a level two
representation for all the functions and diagrams include references to additional levels
wherever applicable.

LEVEL 0

Web-based interface
(internal browser or
LAN Connection)

Banking System for
Credit Card
Transactions

User ID
Fees Due

User Name
User ID

PIN

Higher Education
Online Library

System

Database

Figure 4.26 Context-level Diagram

Student/Faculty Login
User ID
User Type

From Level 0
Internet Browser/
LAN Connection

1 10Student/Faculty
Login

User Name
User ID
PIN

Verification
User Type

Display
Main Menu

Menu
Selection

Database

3 5Media
Search

Account
Status Check

Query Resource
info

User
ID Account

info

Database

Figure 4.27 1 level Data Flow Diagram

Software Design

Self-Instructional Material 145

NOTES

Figure 4.28 1 level Data Flow Diagram

Media Search

2

4 Display
Result

Data

Query

Media
Search Menu

Search for
Resource

Display
“No Matches”

NULL
Result

Resource
Info

Result
Database

Figure 4.29 2 level Data Flow Diagram

Note that the above shown diagrams are not complete depiction of the DFDs that can be
drawn for the Higher Education online library system. In fact, many levels of DFDs can be
drawn for different functions (such as media reservation, account status check, late fees
due/payment, login, user account set up). The functional partitioning of the entire system is
shown in Figure 4.30. Using this functional partitioning various levels of DFDs for various
functions can be easily drawn.

Online Library System

Students and
Faculty

Media
Search

Media
Reservation

Account
Status
Check

Late Fees
Due

(Students
Only)

Media
Checked

Out

Media
Reserved

Student/
Faculty
Account
Update

Student/
Faculty
Account
Creation

Student/
Faculty
Account
Deletion

User
Account
set-up

Media
Check In

Media
Check Out

Report
Generation

Media
Update

Media
Addition

Media
Deletion

Account
Update

Account
Creation

Account
Deletion

Media
Management

Access
Control

Account
Management

Administrator

Login

Library
Staff

Figure 4.30 Functional Partitioning

Check Your Progress
16. Why are software design

notations used?
17. Design representation

serves the purpose for
two individuals. Name
them.

Software Engineering

146 Self-Instructional Material

NOTES

Component/Functional Description: The various functions used in the proposed system
are listed in Table 4.4.

Table 4.4 Functional Description of Higher Education Online Library System

Function Function Name Description

Function 1 Login Function Provides security and to control the user’s
level of access.

Function 2 Media Search Function Searches the media database for books,
magazines/periodicals, and multi-media.

Function 3 Media Reservation Function Allows users to reserve media resources that
are currently checked out.

Function 4 Account Status Check Function Allows users to check the status of their
library account.

Function 5 Overdue Fee Payment Function Allows users to pay overdue fees through
online banking system.

Function 6 User Account Set-up Function Allows library staff to add, delete, and update
user accounts.

Function 7 Media Check in/Check out Function Allows library staff to check media in and
out.

Function 8 Report Generation Function Allows library staff and administrator to
generate reports.

Function 9 Media Management Function Allows administrator to add, delete, and
update media resources.

Function 10 Access Control Function Controls the users level of access and provides
user verification.

Function 11 Account Management Function Allows administrator to add, delete, and
update library staff accounts.

4.10.4 User Interface Design
This section provides the graphic user interface for the online library system. The interface
design for each screen is based on the functionality described in the function description
section. References are provided as appropriate to the corresponding function descriptions.
Student and faculty users will be able to log onto the system from computers both within
the library or from any computer connected to the Internet. The library’s computers will
access the system through a LAN connection while remote computers will access the
system through an Internet browser. The user interfaces displayed in this document will
reflect the screens that will be seen when using the library’s computers. The user interface
will be almost identical when viewed through the Internet browser. The user login will be
the same for all types of users. The access control function will determine the level of
access based on the user type. The user type will be triggered by the user ID, and the
appropriate menu will be displayed. The following screen will be displayed for the initial
login to the system (Function 1).

Software Design

Self-Instructional Material 147

NOTES

Higher Education Online Library System

Welcome to the Library System ...
Please log in

,
Last Name First Name

Library Membership Number

Submit

PIN

File Edit View Insert Help

Figure 4.31 Login in

The data submitted will be verified via the access control function. If the user name or
library membership number does not match the PIN, an error message will be displayed.
The user will have the option to try again, or cancel the operation. Upon successful login,
students and faculty will see the options as shown in Figure 4.32.

Higher Education Online Library System

Please make Selection

Perform
Media
Search

Check
Account
Sales

Exit

File Edit View Insert Help

Figure 4.32 Successful Login in

If the user selects Perform Media Search (Function 2), the following screen will be
displayed to enter the user’s search criteria.

File Edit View Insert Help

Higher Education Online Library System

Please Input your Search Criteria

Title

Author

Subject

ISBN No.

Publication

Return to Main Menu Submit

Figure 4.33 Performing Media Search

Software Engineering

148 Self-Instructional Material

NOTES

If no matches are found, then a message is displayed, saying, “There were no items matching
your request. Please try again”. Now, the user will be given the opportunity to provide new
search criteria. If the searched book is found then the database will be queried and all
matches will be displayed. If the user wishes to reserve a book then reserve button can be
used to reach the reservation screen (Function 3). This is shown in Figure 4.47.

File Edit View Insert Help

Higher Education Online Library System

Title Author Locator ID Checked
Out

Reserved

Introduction to Computer
Science

Introduction to Software
Engineering

Introduction to Information
Technology

Introduction to Networking

Maya
Nandita

Nitin
Sanchita

Ira
Anshu

Tushar
Alkesh

Shilpi
Sarita

1136.89

4298.12

2521.51

3221.91

5171.11

Y

N N

N

N

N

NN

Y

Y

Reserve

Reserve

Reserve

Reserve

Reserve

More Matches...

Return to Main Menu New Search Exit

Introduction to Computer
Applications

Figure 4.34 Searched matches

The user can also check their account status by selecting Check Account Status (Function
4) from the main menu. The user may check the status of media that is currently issued or
reserved to them. The title, author, and due date for each item will be displayed.

File Edit View Insert Help

Higher Education Online Library System
The books currently issued to you are:

Title Author Date Due

Mastering Web Design

Introduction to Internet
Basics

Vipul
Pankaj
Prashant

01/12/05

31/11/05

The books currently reserved by you are:

Title Author Expected Availability

Dev

Rakesh
Sanjay

Computer Programming
in ‘C’

Using Unix

05/12/05

12/12/05

ExitReturn to Main Menu

Figure 4.35 Current User Status

Software Design

Self-Instructional Material 149

NOTES

In addition to the above-mentioned functions, there can be many such functions, which
can be shown in the user interface design. However, since the objective of this case study
is to make students understand the design phase in a clear an concise manner, rest of the
interface design is left for the students to prepare themselves.

4.11 OBJECT-ORIENTED CONCEPTS
Object-oriented approach is the latest and the most adopted approach for developing software
nowadays. Unlike procedural approach of software development, this approach views a
problem in terms of objects rather than procedures. This approach models the real world
objects very well. It emphasizes on data rather than functions or procedures. The behaviour
of the system is achieved by exchanging messages among these objects. The state of the
system is the combined state of all the objects in it. The object-oriented approach uses
some fundamental terms and concepts. They are discussed below.

Object: It is defined as an instance of a particular class. It is an identifiable entity either
physical, software or even conceptual with a well-defined boundary. It consists of a
state and and behaviour. The state of an object is one of the possible conditions that an
object can exist in and is represented by its characteristics or attributes. The behaviour
of an object determines how an object acts or behaves and is represented by the
operations that it can perform. An object is what actually runs in the computer. They
are the building blocks of object-oriented programming. Although, two or more objects
can have same attributes, still they are separate and independent objects with their own
identity.
Class: It is a collection of similar objects. It can be treated as a blueprint or a template
from which individual objects are created. In object-oriented programming, the attributes
of an object are defined as variables and behaviour of an object is represented by
functions or methods. All the objects in a given class are identical in form and behaviour
but may contain different data in their variables. Figure 4.36 illustrates the example of
a class car with attributes colour, gears, speed, model, doors and door locks and functions
running, applying brakes and increasing speed. It also shows the objects Santro and
Maruti 800 of class car that have the attributes blue colour, 5 gears, 60 kmph speed,
model 99, 4 doors and 2 door_ locks and white colour, 4 gears, 50 kmph speed, model
95, 4 doors and 1 door_ locks repectively.

Class: Car
State: Colour, gears, speed,
model, doors, door_locks

Behaviour: Applying brakes,
increasing speed, running

Object: Santro
State: Blue colour, 5 gears,
50 kmph, model 99, 4 doors,
2 door_locks

Object: Maruti 800
State: White colour, 4 gears,
50 kmph, model 95, 4 doors,
1 door_locks

Figure 4.36 Class and Objects

Abstraction: It is a mechanism used to reduce or hide unimportant details and represent
only the essential features so that one can focus on few concepts at a time. It allows us to
manage complex systems by concentrating on the essential features only. In object-oriented
approach, one can abstract both data and functions. The data or the functions that are to be
hidden from the user can be put in the private section of the class. For example, while
driving a car, a driver only knows the essential features to drive a car such as how to use
clutch, brake, accelerator, gears, steering, etc., and is not concerned with the internal
details of the car like motor, engine, wiring, etc.

Check Your Progress
18. Define software design

review.
19. Mention various steps of

software design reviews.
20. What is the purpose

behind conducting
program design review?

Software Engineering

150 Self-Instructional Material

NOTES

Encapsulation: It is the technique of binding or keeping together the data structures and
the methods or functions (that act on the data) in a single unit called a class. Encapsulation
is the way to implement data abstraction. Well-encapsulated objects act as a “black box”
for other parts of the program, that is, they provide a service to the objects that interact
with it, but the calling objects do not need to know the details of how the service is
provided. The functions act as the interface to access the data. If the implementation of the
function is changed at any time, it makes no difference to the user as long as the interface
remains the same. For example, all the data related to a car and the functions associated
with it are combined to form a class car.

Inheritance: As stated earlier, all the objects of similar kind are grouped together to form
a class. But, sometimes the situation arises when the different kinds of objects have certain
(not all) common characteristics. Object-oriented programming allows classes to inherit
commonly used state and behaviour from other classes. Inheritance can be defined as the
process whereby one class acquires characteristics from one or more other class. If a
class acquires properties from a single class, it is termed as single inheritance and if it
acquires characteristics from two or more classes, it is known as multiple inheritance.
The class, which is inherited by other classes, is known as super-class or base class and
the class, which inherits the properties of the base class, is called sub-class or derived
class. In other words, the super-class is the generalization of a collection of classes related
to it and the sub-class is the specialized version of the base class. The main advantage of
inheritance is the code-reusability. Software developers can simply reuse the existing classes
having the same behaviour that they need in the new software, instead of writing a new
code. For example, the class car is inherited from the class automobiles and automobiles is
further inherited from the class vehicles.

Vehicles

Pulled-VehiclesAutomobiles

RikshawCar

Figure 4.37 Inheritance

Polymorphism: Polymorphism (from the Greek meaning “having multiple forms”) is the
ability of an entity such as variable, function or a message to be processed in more than one
form. It can also be defined as the property of an object belonging to a same or different
class to respond to the same message or function in a different way. For example, if a
message change_gear is passed to the class vehicles then all the automobiles will behave
alike but the vehicles belonging to the class pulled_vehicles will not respond to the message.

4.12 LET US SUMMARIZE
1. Software design is a software engineering activity where software requirements are

analyzed in order to produce a description of the internal structure and organization of
the system that serves as a basis for its construction (coding).

2. Software design principles act as a framework for the designers to follow a good
design practice.

3. There are various software design concepts, which lay a foundation for the software
design process.

Software Design

Self-Instructional Material 151

NOTES

4. Abstraction refers to a powerful design tool, which allows software designers to consider
components at an abstract level, while neglecting the implementation details of the
components.

5. Software architecture refers to the structure of the components of a program/system,
their interrelationships, and guidelines governing their design and evolution over time.

6. A pattern describes a problem, which occurs over and over again in our environment,
and then describes a solution to that problem, such that the solution can be used again
and again. Thus, each pattern represents a reusable solution to a recurring problem.

7. Software architecture and design patterns represent modularity. Modularity is achieved
by dividing the software into uniquely named and addressable components, which are
also known as modules.

8. Modules should be specified and designed in such a way that information contained
within one module is inaccessible to other modules that do not require such information.
The way of hiding unnecessary details is referred to as information hiding.

9. Stepwise refinement is a top-down design strategy used for decomposing a system
from a high-level of abstraction into a more detailed-level (lower-level) of abstraction.

10. Refactoring is an important design activity that simplifies design of a module without
changing its behaviour or function. Refactoring can be defined as a process of modifying
a software system to improve the internal structure of the design without changing its
external behaviour.

11. When the architectural style of a design follows a hierarchical nature, the structure of
the program can be partitioned either horizontally or vertically.

12. Data design creates data structure by converting data objects specified during analysis
phase. The data objects, attributes, and relationships defined in entity relationship
diagrams provide the basis for data design activity. Various studies suggest that design
engineering should begin with data design, since this design lays the foundation for all
other design elements.

13. Architectural design specifies the relationship between structural elements of software,
design patterns, architectural styles, and the factors affecting the way in which
architecture can be implemented.

14. Component-level design/procedural design converts the structural elements of software
architecture into a procedural description of software components.

15. Interface design depicts, how software communicates with the system that interoperates
with it and with the end-users.

16. To represent software design, design notations are used. These notations are important
as they help designers to represent modules, interfaces, hidden information,
concurrency, message passing, invocation of operations and overall program structure
in a comprehensive manner.

17. The various notations that are commonly used are flow charts, data flow diagrams,
structure charts, HIPO diagram, decision table, and program design language.

18. Software design reviews are well documented, comprehensive, and systematic
examinations of a design used to evaluate the adequacy of the design requirements, to
evaluate the capability of the design to meet these requirements, and to identify problems.

19. The preliminary design review is a formal inspection of the high-level architectural
design of the software, which is conducted to verify that the design satisfies the
functional and non-functional requirements and is in conformance with the requirements
specified by the users.

20. Once the preliminary design review is successfully completed and the customer(s) is
satisfied with the proposed design critical design review is conducted.

21. On successful completion of critical design review, program design review is conducted
to get feedback on the designs before implementation (coding) begins.

Check Your Progress
21. Define software design

documentation.
22. Mention the sections that

forms a part of software
design documentation.

Software Engineering

152 Self-Instructional Material

NOTES

22. Software design documentation is a description of software created to facilitate analysis,
planning, implementation, and decision-making. This design description is used as a
medium for communicating software design information, and can be considered as a
blueprint or model of the system.

4.13 ANSWERS TO ‘CHECK YOUR PROGRESS’
1. Software design is a software engineering activity where software requirements are

analyzed in order to produce a description of the internal structure and organization
of the system that serves as a basis for its construction (coding). IEEE defines
software design as “both a process of defining the architecture, components, interfaces,
and other characteristics of a system or component and the result of that process”.

2. Abstraction refers to a powerful design tool, which allows software designers to
consider components at an abstract level, while neglecting the implementation details
of the components. IEEE defines abstraction as “a view of a problem that extracts
the essential information relevant to a particular purpose and ignores the remainder of
the information”.

3. Software architecture refers to the structure of the components of a program/system,
their interrelationships, and guidelines governing their design and evolution over time.
Software architecture can be defined as a program or computing system, which
comprises of software elements, the externally visible properties of those elements,
and the relationships amongst them.

4. Modularity is achieved by dividing the software into uniquely named and addressable
components, which are also known as modules. The basic idea underlying modular
design is to organize a complex system (large program) into a set of distinct
components, which are developed independently and then are connected together.

5. Data design is developed by transforming the data dictionary and entity relationship
diagram (identified during the requirements phase) into data structures that are required
to implement the software. The data design process includes identifying the data,
defining specific data types and storage mechanisms, and ensuring data integrity by
using business rules and other run-time enforcement mechanisms.

6. The structure of data can be viewed at three levels, namely, program component
level, application level, and business level. At the program component level, the
design of data structures and the algorithms required to manipulate them is necessary
if a high-quality software is desired. At the application level, the translation of a data
model into a database is essential to achieve the specified business objectives of a
system. At the business level, the collection of information stored in different databases
should be reorganized into data warehouse, which enables data mining that has influential
impact on the business.

7. Requirements of the software should be transformed into an architecture that describes
software’s top-level structure and identifies its components. This is accomplished
through architectural design (also called system design), which acts as a preliminary
‘blueprint’ from which software can be developed.

8. Some of the advantages associated with object-oriented architecture are listed below:
• Hidden implementation details allow object to be changed without affecting the

accessing routine of other objects.
• Data allows designers to decompose problems into collections of interacting agents.

9. A call and return architecture enables software designers to achieve a program structure,
which can be easily modified. This style consists of the following two sub-styles:

Software Design

Self-Instructional Material 153

NOTES

• Main program/subprogram architecture: In this, function is decomposed into
a control hierarchy where the main program invokes a number of program
components, which in turn may invoke other components.

• Remote procedure call architecture: In this, components of main or sub program
architecture are distributed over a network across multiple computers.

10. As soon as first iteration of architectural design is complete, component-level design.
Component-level design is created by transforming the structural elements defined
by the software architecture into procedural descriptions of software components.

11. Functional independence is the refined form of the design concepts of modularity,
abstraction, and information hiding. Functional independence is achieved by developing
a module in such a way that uniquely performs given sets of function without interacting
with other parts of the system.

12. Component also known as module, resides within the software architecture and serves
one of the three roles listed below:

• A control component, which coordinates the invocation of all other components
present in the problem domain.

• A problem domain component, which implements a complete or partial function as
required by the user.

• An infrastructure component supports functions, which in-turn supports the
processing required in the problem domain.

13. User interfaces determine the way in which users interact with the software. The
user interface design creates effective communication medium between a human and
a computing machine. It provides easy and intuitive access to information as well as
efficient interaction and control of software functionality.

14. Today, look and feel is one of the biggest USP (unique selling point) while designing
software. An attractive user interface improves the sales because people like to have
things that look nice. An attractive user interface makes the user feel better (as it
provides ease of use), while using the product. Many software organisations focus
specifically on designing software, which has attractive look and feel so that they can
lure customers/users towards their product(s).

15. Various evaluation techniques used to evaluate the user interface design are: use it
yourself, colleague evaluation, user testing, and heuristic evaluation.

16. Design notations are used to represent software design. These notations are important
as they help designers to represent modules, interfaces, hidden information,
concurrency, message passing, invocation of operations and overall program structure
in a comprehensive manner.

17. Design representation serves the purpose for two individuals, which are listed below:

• The designers themselves who try to detect missing or inconsistent aspects of a
proposed solution at the earlier stages of design.

• Other stakeholders (programmers, testers, or maintainers) who try to understand
the designer’s intent.

18. Software design reviews are well documented, comprehensive, and systematic
examinations of a design used to evaluate the adequacy of the design requirements, to
evaluate the capability of the design to meet these requirements, and to identify
problems. IEEE defines software design review as “a formal meeting at which a
system’s preliminary or detailed design is presented to the user, customer, or other
interested parties for comment and approval”.

Software Engineering

154 Self-Instructional Material

NOTES

19. The review process is carried out in three steps namely preliminary design review,
critical design review, and program design review.

20. Program design review is conducted between the designers and developers with the
purpose to:

• Ensure that the detailed design is feasible.
• Ensure that the interface is consistent with architectural design.
• Specify whether design is amenable to implementation language.
• Ensure that structured programming constructs are used throughout.
• Ensure that the implementation team will be able to understand the proposed design.

21. IEEE defines software design documentation as “a description of software created to
facilitate analysis, planning, implementation, and decision making. This design
description is used as a medium for communicating software design information, and
can be considered as a blueprint or model of the system”.

22. Software design documentation consists of various sections, namely scope, references,
definition, purpose, design description information content, and design description
organization.

4.14 QUESTIONS AND EXERCISES

I. Fill in the Blanks

1. Software design principles act as a ________ for the designers to follow a good design
practice.

2. ________ refers to a powerful design tool, which allows software designers to consider
components at an abstract level, while neglecting the implementation details of the
components.

3. Software architecture and design patterns represent ________.
4. The way of hiding unnecessary details is referred to as ________.

II. Multiple Choice Questions

1. The various notations that are commonly used are ________, data flow diagrams,
structure charts, HIPO diagram, decision table, and program design language.
(a) Circles (b) Flow charts (c) Gantt charts (d) Rayleigh curves

III. State Whether True and False

1. Stepwise refinement is a top-down design strategy used for decomposing a system
from a high-level of abstraction into a more detailed-level (lower-level) of abstraction.

2. Modules should be specified and designed in such a way that information contained
within one module is accessible to other modules that do not require such information.

3. Software design is a software engineering activity where software requirements are
analyzed in order to produce a description of the internal structure and organization of
the system that serves as a basis for its analysis.

4. Once the preliminary design review is successfully completed and the customer(s) is
satisfied with the proposed design critical design review is conducted.

IV. Descriptive Questions
1. Develop a procedural design for a program that accepts two arbitrarily long integers

and produces their sum.

Software Design

Self-Instructional Material 155

NOTES

2. Define module coupling and cohesion. Discuss all types of coupling supported by
diagrams.

3. How can one test the user interface? Discuss the merits and demerits of user interface
rules.

4. Write short notes on:
(a) Stepwise Refinement (b) Structural Partitioning
(c) Patterns (d) Information hiding

5. Explain software design notations used to represent software design?
6. Develop a software design for a railway reservation system. Include all the design

elements discussed in the chapter. Following assumption should be noted.
(i) The system should support network
(ii) The system should use Oracle as back end.
(iii) The system should support Windows 98 and higher versions.

4.15 FURTHER READING

1. Software Engineering: A Practitioner’s Approach – Roger Pressman

2. An Integrated Approach to Software Engineering – Pankaj Jalote

Software Testing

Self-Instructional Material 157

NOTES

UNIT 5 SOFTWARE TESTING
Structure
5.0 Introduction
5.1 Unit Objectives
5.2 Software Testing Basics

5.2.1 Principles of Software Testing; 5.2.2 Testability; 5.2.3 Characteristics of Software Test
5.3 Test Plan
5.4 Test Case Design
5.5 Software Testing Strategies

5.5.1 Unit Testing; 5.5.2 Integration Testing; 5.5.3 System Testing; 5.5.4 Validation Testing
5.6 Testing Techniques

5.6.1 White Box Testing; 5.6.2 Black Box Testing;
5.6.3 Difference between White Box and Black Box Testing; 5.6.4 Gray Box Testing

5.7 Object-oriented Testing
5.7.1 Testing of Classes; 5.7.2 Developing Test Cases in Object-oriented Testing

5.7.3 Object-oriented Testing Methods

5.8 Let us Summarize
5.9 Answers to ‘Check Your Progress’
5.10 Questions and Exercises
5.11 Further Reading

5.0 INTRODUCTION

Software testing is an essential part of software development process, which is used to
identify the correctness, completeness and quality of developed software. It’s main objective
is to detect errors in the software. Errors prevent software from producing outputs according
to user requirements. Errors occur when any aspect of a software product is incomplete,
inconsistent, or incorrect. Errors can be broadly classified into three types, namely,
requirements errors, design errors, and programming errors. To avoid these errors, it is
necessary that: requirements are examined for conformance to user needs, software design
is consistent with the requirements and notational convention, and the source code is
examined for conformance to the requirements specification, design documentation, and
user expectations. All this can be accomplished through efficacious means of software
testing.

Software testing involves activities aimed at evaluating an attribute or capability of a program
or system and ensuring that it meets its required results. It should be noted that testing is
fruitful only if it is performed in a correct manner. Through effective software testing, the
software can be examined for correctness, comprehensiveness, consistency, and adherence
to standards. This helps in delivering high quality software products and lowering maintenance
costs, thus leading to more contented users.

5.1 UNIT OBJECTIVES

After reading this unit, the reader will understand:

• Guidelines that are required to perform efficient and effective testing.
• Test plan, which describes objectives, scope, and method of software testing.

Software Engineering

158 Self-Instructional Material

NOTES

• Testing strategies that are used to carry out testing in a planned and systematic manner.
• Various levels of testing: unit testing, integration testing, system testing, and acceptance

testing.
• White box testing and black box testing techniques.
• How testing is performed in the object-oriented environment.
• Various tools used in software testing.
• The importance of software test report.

5.2 SOFTWARE TESTING BASICS

Software testing is a process, which is used to identify the correctness, completeness and
quality of software. IEEE defines testing as “the process of exercising or evaluating a
system or system component by manual or automated means to verify that it satisfies specified
requirements or to identify differences between expected and actual results.”

Software testing is often used in association with the terms verification and validation.
Verification refers to checking or testing of items, including software, for conformance
and consistency with an associated specification. For verification, techniques like reviews,
analysis, inspections and walkthroughs are commonly used. While validation refers to the
process of checking that the developed software is according the requirements specified
by the user. Verification and validation can be summarised as follows:

Verification: Are we developing the software right?
Validation: Are we developing the right software?

(a) Objectives of Software Testing: Software testing evaluates software by manual and
automated means to ensure that it is functioning in accordance with user requirements.
The main objectives of software testing are listed below:

• To remove errors, which prevent software from producing outputs according to user
require ments?

• To remove errors that lead to software failure.
• To determines whether system meets business and user needs.
• To ensure that software is developed according to user requirements.
• To improve the quality of software by removing maximum possible errors from it.

(b) Testing in Software Development Life Cycle (SDLC): Software testing comprises of
a set of activities, which are planned before testing begins. These activities are carried out
for detecting errors that occur during various phases of SDLC. The role of testing in
software development life cycle is listed in Table 5.1.

Errors

Requirements Conformance

Quality

Figure 5.1 Objectives of Software Testing

Software Testing

Self-Instructional Material 159

NOTES

Table 5.1 Role of Testing in Various Phases of SDLC

Software Development Phase Testing

Requirements Phase � Determine the test strategy.

� Determine adequacy of requirements.

� Generate functional test conditions.

Design Phase � Determine consistency of design with requirements.

� Determine adequacy of design.

� Generate structural and functional test conditions.

Coding Phase � Determine consistency with design.

� Determine adequacy of implementation.

� Generate structural and functional test conditions for programs/
units.

Testing Phase � Determine adequacy of the test plan.

� Test application system.

Installation and Maintenance Phase � Place tested system into production.

� Modify and retest.

(c) Bugs, Error, Fault and Failure: The purpose of software testing is to find bugs,
errors, faults, and failures present in the software. Bug is defined as a logical mistake,
which is caused by a software developer while writing the software code. Error is defined
as the difference between the outputs produced by the software and the output desired by
the user (expected output). Fault is defined as the condition that leads to malfunctioning of
the software. Malfunctioning of software is caused due to several reasons, such as change
in the design, architecture, or software code. Defect that causes error in operation or
negative impact is called failure. Failure is defined as the state in which software is unable
to perform a function according to user requirements. Bugs, errors, faults, and failures
prevent software from performing efficiently and hence, cause the software to produce
unexpected outputs. Errors can be present in the software due to the reasons listed below:

• Programming errors: Programmers can make mistakes while developing the source
code.

• Unclear requirements: The user is not clear about the desired requirements or the
developers are unable to understand the user requirements in a clear and concise manner.

• Software complexity: The complexity of current software can be difficult to
comprehend for someone who does not have prior experience in software development.

• Changing requirements: The user may not understand the effects of change. If
there are minor changes or major changes, known and unknown dependencies among
parts of the project are likely to interact and cause problems. This may lead to complexity
of keeping track of changes and ultimately may result in errors.

• Time pressures: Maintaining schedule of software projects is difficult. When deadlines
are not met, the attempt to speed up the work causes errors.

• Poorly documented code: It is difficult to maintain and modify code that is badly
written or poorly documented. This causes errors to occur.

Note: In this chapter, ‘error’ is used as a general term for ‘bugs’, ‘errors’, ‘faults’, and
‘failures’.

(d) Who Performs Testing?: Testing is an organisational issue, which is performed either
by the software developers (who originally developed the software) or by an independent
test group (ITG), which comprises of software testers. The software developers are

Software Engineering

160 Self-Instructional Material

NOTES

considered to be the best persons to perform testing as they have the best knowledge about
the software. However, since software developers are involved in the development process,
they may have their own interest to show that the software is error free, meets user
requirements, and is within schedule and budget. This vested interest hinders the process
of testing.

To avoid this problem, the task of testing is assigned to an independent test group (ITG),
which is responsible to detect errors that may have been neglected by the software developers.
ITG tests the software without any discrimination since the group is not directly involved
in the development process. However, the testing group does not completely take over the
testing process, instead it works with the software developers in the software project to
ensure that testing is performed in an efficient manner. During the testing process, developers
are responsible for correcting the errors uncovered by the testing group.

Generally, an independent testing group forms a part of the software development project
team. This is because the group becomes involved during the specification activity and
stays involved (planning and specifying test procedures) throughout the development process.

• The various advantages and disadvantages associated with independent testing group
are listed in Table 5.2.

Table 5.2 Advantages and Disadvantages of Independent Test Group

Advantages Disadvantages

• Independent testing is typically more efficient
at detecting defects related to special cases,
interaction between modules, and system level
usability and performance problems.

• Programmers are neither trained, nor motivated
to test. Thus ITG serves as an immediate solution.

• Test groups can provide insight into the
reliability of the software before it is delivered
to the user.

To plan and perform testing, software testers should have the knowledge about the function
for which the software has been developed, the inputs and how they can be combined, and
the environment in which the software will eventually operate. This process is time-
consuming and requires technical sophistication and proper planning on the part of the
testers. To achieve technical know-how, testers must not only have good development
skills but also possess knowledge about formal languages, graph theory, and algorithms.
Other factors that should be kept in mind while performing testing are:

• Time available to perform testing.

• Training required acquainting testers about the software.

• Attitude of testers.

• Relationship between testers and developers.

Note: Along with software testers, customers, end-users, and management also play an
important role in software testing.

5.2.1 Principles of Software Testing
There are certain principles that are followed during software testing. These principles act
as a standard to test software and make testing more effective and efficient. The commonly
used software testing principles are listed below:

• Keeping independent test groups can result in
duplication of effort. For example, the test group
may use resources to perform tests that have
already been performed by the developers.

• Problem can arise when the test group is not
physically collocated with the design group.

• The cost of maintaining separate test groups is
very high.

Software Testing

Self-Instructional Material 161

NOTES

• Define the expected output: When programs are executed during testing, they may
or may not produce the expected outputs due to different types of errors present in the
software. To avoid this, it is necessary to define the expected output before software
testing begins. Without knowledge of the expected results, testers may fail to detect an
erroneous output.

• Inspect output of each test completely: Software testing should be performed once
the software is complete in order to check its performance and functionality. Also,
testing should be performed to find the errors that occur in various phases of software
development.

Define the expected output

Inspect output of each test
completely

Include test cases for invalid
and unexpected conditions

Test the modified program to
check the performance

Guidelines
of

Testing

Figure 5.2 Software Testing Guidelines

• Include test cases for invalid and unexpected conditions: Generally, software
produces correct outputs when it is tested using accurate inputs. However, if unexpected
input is given to the software, it may produce erroneous outputs. Hence, test cases that
detect errors even when unexpected and incorrect inputs are specified should be developed.

• Test the modified program to check its expected performance: Sometimes, when
certain modifications are made in software (like adding of new functions) it is possible
that software produces unexpected outputs. Hence, software should be tested to verify
that it performs in the expected manner even after modifications.

5.2.2 Testability
The ease with which a program is tested is known as testability. Testability can be defined
as the degree to which a program facilitates the establishment of test criteria and execution
of tests to determine whether the criteria have been met or not. There are several
characteristics of testability, which are listed below:

• Easy to operate: High quality software can be tested in a better manner. This is because
if software is designed and implemented considering quality, then comparatively fewer
errors will be detected during the execution of tests.

• Observability: Testers can easily identify whether the output generated for certain
input is accurate or not simply by observing it.

• Decomposability: By breaking software into independent modules, problems can be
easily isolated and the modules can be easily tested.

• Stability: Software becomes stable when changes made to the software are controlled
and when the existing tests can still be performed.

• Easy to understand: Software that is easy to understand can be tested in an efficient
manner. Software can be properly understood by gathering maximum information about
it. For example, to have a proper knowledge of software, its documentation can be

Software Engineering

162 Self-Instructional Material

NOTES

used, which provides complete information of software code thereby increasing its
clarity and making testing easier. Note that documentation should be easily accessible,
well organised, specific, and accurate.

Easy to
Operate

Stability

Observa-
bility

Easy to
Understand

Decompo-
sability

Testability

Figure 5.3 Testability

5.2.3 Characteristics of Software Test
There are several tests (such as unit and integration) used for testing software. Each test
has its own characteristics. Following points should be noted:

• High probability of finding errors: To find maximum errors, the tester should
understand the software thoroughly and try to find the possible ways in which the
software can fail. For example, in a program to divide two numbers, the possible way in
which the program can fail is when 2 and 0 are given as inputs and 2 is to be divided by
0. In this case, a set of tests should be developed that can demonstrate an error in the
division operator.

• No redundancy: Resources and testing time are limited in software development process.
Thus, it is not beneficial to develop several tests, which have the same intended purpose.
That is, every test should have a distinct purpose.

• Choose most appropriate test: There can be different tests that have the same intent
but due to certain limitations, such as time and resource constraint, only few of them are
used. In such a case, the tests that have the highest probability of finding errors should
be considered.

• Moderate: A test is considered good if it is neither too simple nor too complex. Many
tests can be combined to form one test case. However, this can increase the complexity
and leave many errors undetected. Hence, all the tests should be performed separately.

5.3 TEST PLAN

A test plan describes how testing would be accomplished. A test plan is defined as a
document that describes the objectives, scope, method, and purpose of software testing.
This plan identifies test items, features to be tested, testing tasks and the persons involved
in performing these tasks. It also identifies the test environment and the test design and
measurement techniques that are to be used. Note that a properly defined test plan is an
agreement between testers and users describing the role of testing in software.

Check Your Progress

1. Define verification and
validation. Differentiate
between them.

2. Explain the terms, bugs,
error, fault, and failure.

3. What function is performed
by independent test group?

Software Testing

Self-Instructional Material 163

NOTES

A complete test plan helps people outside the test group to understand the ‘why’ and ‘how’
of product validation. Whereas an incomplete test plan can result in a failure to check how
the software works on different hardware and operating systems or when software is used
with other software. To avoid this problem, IEEE states some components that should be
covered in a test plan. These components are listed in Table 5.3.

Table 5.3 Test Plan Components

Component Purpose

Responsibilities Assigns responsibilities and keeps people on track and focused.
Assumptions Avoids misunderstandings about schedules.
Test Outlines the entire process and maps specific tests. The testing scope,

schedule, and duration are also outlined.
Communication Communication plan (who, what, when, how about the people) is

developed.
Risk Analysis Identifies areas that are critical for success.
Defect Reporting Specifies how to document a defect so that it can be reproduced, fixed,

and retested.
Environment Specifies the technical environment, data, work area, and interfaces used

in testing. This reduces or eliminates misunderstandings and sources of
potential delay.

Steps in Development of Test Plan: A carefully developed test plan facilitates effective
test execution, proper analysis of errors, and preparation of error report. To develop a test
plan, a number of steps are followed, which are listed below:
1. Set objectives of test plan: Before developing a test plan, it is necessary to understand

its purpose. The objectives of a test plan depend on the objectives of software. For
example, if the objective of software is to accomplish all user requirements, then a test
plan is generated to meet this objective. Thus, it is necessary to determine the objective
of software before identifying the objective of test plan.

2. Develop a test matrix: Test matrix indicates the
components of software that are to be tested. It also specifies
the tests required to test these components. Test matrix is
also used as a test proof to show that a test exists for all
components of software that require testing. In addition,
test matrix is used to indicate the testing method which is
used to test the entire software.

3. Develop test administrative component: It is necessary
to prepare a test plan within a fixed time so that software
testing can begin as soon as possible. The test administrative
component of test plan specifies the time schedule and
resources (administrative people involved while developing
the test plan) required to execute the test plan. However, if
implementation plan (a plan that describes how the
processes in software are carried out) of software changes,
the test plan also changes. In this case, the schedule to
execute the test plan also gets affected.

4. Write the test plan: The components of test plan, such as its objectives, test matrix,
and administrative component are documented. All these documents are then collected
together to form a complete test plan. These documents are organised either in an
informal or formal manner. In informal manner, all the documents are collected and
kept together. The testers read all the documents to extract information required for
testing software. On the other hand, in formal manner, the important points are extracted

Figure 5.4 Steps in
Test Plan

Set Objec-
tives

Develop a
Test Matrix

Develop Test
Administrative
Component

Write the
Test Plan

Software Engineering

164 Self-Instructional Material

NOTES

from the documents and kept together. This makes it easy for testers to extract important
information, which they require during software testing.
A test plan is shown in Figure 5.5. This plan has many sections, which are listed
below:

1.0 Overview
1.1 Project Objectives
1.2 System Description
1.3 Plan Objectives
1.4 References
1.5 Issues, Assumptions

2.0 Test Scope
2.1 Features to be tested
2.2 Features not to be tested

3.0 Test Methodologies
3.1 Testing Approach
3.2 Test Data
3.3 Test Documents
3.4 Requirements Validation
3.5 Control Procedures

4.0 Test Phases
4.1 Definition
4.2 Participants
4.3 Source of Data
4.4 Entrance and Exit Criteria
4.5 Requirements
4.6 Work Products
4.7 Test Completion Acceptance

5.0 Test Environment
5.1 Hardware
5.2 Software
5.3 Location
5.4 Staffing and Training

6.0 Schedule
7.0 Approvals and Distribution

Figure 5.5 Test Plan

• Overview: Describes the objectives and functions of the software to be performed. It
also describes the objectives of test plan, such as defining responsibilities, identifying
test environment and giving a complete detail of the sources from where the information
is gathered to develop the test plan.

• Test scope: Specifies features and combination of features, which are to be tested.
These features may include user manuals or system documents. It also specifies the
features and their combinations that are not to be tested.

• Test methodologies: Specifies types of tests required for testing features and combination
of these features, such as regression tests and stress tests. It also provides description
of sources of test data along with how test data is useful to ensure that testing is adequate,
such as selection of boundary or null values. In addition, it describes the procedure for
identifying and recording test results.

• Test phases: Identifies various kinds of tests, such as unit testing, integration testing
and provides a brief description of the process used to perform these tests. Moreover, it
identifies the testers that are responsible for performing testing and provides a detailed
description of the source and type of data to be used. It also describes the procedure of
evaluating test results and describes the work products, which are initiated or completed
in this phase.

• Test environment: Identifies the hardware, software, automated testing tools, operating
system, compliers, and sites required to perform testing. It also identifies the staffing
and training needs.

• Schedule: Provides detailed schedule of testing activities and defines the responsibilities
to respective people. In addition, it indicates dependencies of testing activities and the
time frames for them.

Check Your Progress
4. What is a test plan?
5. Briefly describe

components of a test plan.

Software Testing

Self-Instructional Material 165

NOTES

• Approvals and distribution: Identifies the individuals who approve a test plan and its
results. It also identifies the people to whom test plan document(s) is distributed.

5.4 TEST CASE DESIGN

A test case is a document that describes an input, action, or event and its expected result,
in order to determine whether the software or a part of the software is working correctly
or not. IEEE defines test case as “a set of input values, execution preconditions, expected
results and execution post conditions, developed for a particular objective or test condition,
such as to exercise a particular program path or to verify compliance with a specific
requirement”. Generally, a test case contains particulars, such as test case identifier, test
case name, its objective, test conditions/setup, input data requirements, steps, and expected
results.

Incomplete and incorrect test cases lead to incorrect and erroneous test outputs. To avoid
this, a test case should be developed in such a manner that it checks software with all
possible inputs. This process is known as exhaustive testing and the test case, which is
able to perform exhaustive testing, is known as ideal test case. Generally, a test case is
unable to perform exhaustive testing therefore, a test case that gives satisfactory results is
selected. In order to select a test case, certain questions should be addressed.

• How to select a test case?

• On what basis certain elements of program are included or excluded from a test case?

To provide an answer to the above-mentioned questions, a test selection criterion is used.
For a given program and its specifications, a test selection criterion specifies the conditions
that should be satisfied by a set of test cases. For example, if the criterion is that all the
control statements in a program are executed at least once during testing, then a set of test
cases which ensures that the specified condition is met, should be selected.

(a) Test Case Generation: The process of generating test cases helps in locating problems
in the requirements or design of software. To generate a test case, initially a criterion that
evaluates a set of test cases is specified. Then, a set of test cases that satisfy the specified
criterion is generated. There are two methods used to generate test cases, which are listed
below:

• Code based test case generation: This approach, also known as structure based test
case generation is used to analyse the entire software code to generate test cases. It
considers only the actual software code to generate test cases and is not concerned with
the user requirements. Test cases developed using this approach are generally used for
unit testing. These test cases can easily test statements, branches, special values, and
symbols present in the unit being tested.

• Specification based test case generation: This approach uses specifications, which
indicate the functions that are produced by software to generate test cases. In other
words, it considers only the external view of software to generate test cases. Specification
based test case generation is generally used for integration testing and system testing to
ensure that software is performing the required task. Since this approach considers only
the external view of the software, it does not test the design decisions and may not cover
all statements of a program. Moreover, as test cases are derived from specifications, the
errors present in these specifications may remain uncovered.

Several tools known as test case generators are used for generating test cases. In addition
to test case generation, these tools specify the components of software that are to be
tested. An example of test case generator is ‘astra quick test’, which captures business
processes in the visual map and generates data driven tests automatically.

Software Engineering

166 Self-Instructional Material

NOTES

(b) Test Case Specifications : The test plan is not concerned with the details of testing a
unit. Moreover, it does not specify the test cases to be used for testing units. Thus, test
case specification is done in order to test each unit separately. Depending on the testing
method specified in test plan, features of unit that need to be tested are ascertained. The
overall approach stated in test plan is refined into specific test methods and into the criteria
to be used for evaluation. Based on test methods and criteria, test cases to test the unit are
specified.
For each unit being tested, these test case specifications provide test cases, inputs to be
used in test cases, conditions to be tested by tests cases and outputs expected from test
cases. Generally, test cases are specified before they are used for testing. This is because,
testing has many limitations and effectiveness of testing is highly dependent on the nature
of test cases.

Test case specifications are written in the form of a document. This is because the quality
of test cases needs to be evaluated. To evaluate the quality of test cases, test case review is
done for which a formal document is needed. The review of test case document ensures
that test cases satisfy the chosen criteria and are consistent with the policy specified in the
test plan. The other benefit of specifying test cases formally is that it helps testers to select
a good set of test cases.

5.5 SOFTWARE TESTING STRATEGIES

Software testing strategies can be considered
as various levels of testing that are performed to
test the software. The first level starts with testing
of individual units of software. Once the
individual units are tested, they are integrated
and checked for interfaces established between
them. After this, entire software is tested to
ensure that the output produced is according to
user requirements. As shown in Figure 5.6, there
are four levels of software testing, namely, unit
testing, integration testing, system testing, and
acceptance testing.

5.5.1 Unit Testing
Unit testing is performed to test the individual units of software. Since software is made of
a number of units/modules, detecting errors in these units is simple and consumes less
time, as they are small in size. However, it is possible that the outputs produced by one unit
become input for another unit. Hence, if incorrect output produced by one unit is provided
as input to the second unit, then it also produces wrong output. If this process is not
corrected, the entire software may produce unexpected outputs. To avoid this, all the units
in software are tested independently using unit testing.

Unit level testing is not just performed once during the software development, rather it is
repeated whenever software is modified or used in a new environment. The other points
noted about unit testing are listed below:

• Each unit is tested in isolation from other parts of a program.

• The developers themselves perform unit testing.

• Unit testing makes use of white box testing methods.

Figure 5.6 Levels of Software Testing

Check Your Progress
6. Define test case.
7. What is exhaustive testing

and ideal test case?
8. Define the role played by

test case specification.

Accept-
ance Testing

System Testing

Integration Testing

Unit Testing

Software Testing

Self-Instructional Material 167

NOTES

Module to
be Tested

Test Cases

Results

Figure 5.7 Unit Testing

Unit testing is used to verify the code produced during software coding and is responsible
for assessing the correctness of a particular unit of source code. In addition, unit testing
performs the functions listed below:

• Tests all control paths to uncover maximum errors that occur during the execution of
conditions present in the unit being tested.

• Ensures that all statements in the unit are executed at least once.
• Tests data structures (like stacks, queues) that represent relationships among individual

data elements.
• Checks the range of inputs given to units. This is because every input range has a

maximum and minimum value and the input given should be within the range of these
values.

• Ensures that the data entered in variables is of the same data type as defined in the unit.
• Checks all arithmetic calculations present in the unit with all possible combinations of

input values.

(a) Types of Unit Testing : A series of stand-alone tests are conducted during unit testing.
Each test examines an individual component that is new or has been modified. A unit test is
also called a module test because it tests the individual units of code that form part of the
program and eventually the software. In a conventional structured programming language,
such as C, the basic unit is a function or sub-routine while, in object-oriented language
such as C++ the basic unit is a class.
The various tests that are performed as a part of unit testing are listed below:

• Module interface: These are tested to ensure that information flows in a proper manner
into and out of the ‘unit’ under test. Note that test of data flow (across a module
interface) is required before any other test is initiated.

• Local data structure: These are tested to ensure that the temporarily stored data maintains
its integrity while an algorithm is being executed.

+ + + + + + + + + +

+ + + + + + + + + +

Boundary Conditions Independent Paths

Error Handling Paths

Module Interface Local Data Structure
Test Cases

Module to
be Tested

Figure 5.8 Various Unit Testing Methods

Software Engineering

168 Self-Instructional Material

NOTES

• Boundary conditions: These are tested to ensure that the module operates as desired
within the specified boundaries.

• All independent paths: These are tested to ensure that all statements in a module have
been executed at least once. Note that in this testing, the entire control structure should
be exercised.

• Error handling paths: After successful completion of the various tests, error-handling
paths are tested.

(b) Unit Test Case Generation: Various unit test cases are generated to perform unit
testing. Test cases are designed to uncover errors that occur due to erroneous computations,
incorrect comparisons, and improper control flow. A proper unit test case ensures that unit
testing is performed efficiently. To develop test cases, the following points should be
considered.

• Expected functionality: A test case is created for testing all functionalities present in
the unit being tested. For example, structured query language (SQL) query is given that
creates Table_A and alters Table_B. A test case is developed to make sure that ‘Table_A’
is created and ‘Table_B’ is altered.

• Input values: Test cases are developed to check various aspects of inputs, which are
listed below:

� Every input value: A test case is developed to check every input value, which is
accepted by the unit being tested. For example, if a program is developed to print a
table of five, then a test case is developed which verifies that only five is entered as
input.

� Validation of input: Before executing software, it is important to verify whether all
inputs are valid or not. For this purpose, a test case is developed which verifies the
validation of all inputs. For example, if a numeric field accepts only positive values,
then a test case is developed to verify that the numeric field is accepting only positive
values.

� Boundary conditions: Generally, software fails at the boundaries of input domain
(maximum and minimum value of the input domain). Thus, a test case is developed,
which is capable of detecting errors that caused software to fail at the boundaries of
input domain. For example, errors may occur while processing the last element of an
array. In this case, a test case is developed to check whether error occurs while
processing the last element of the array or not.

� Limitation of data types: Variable that holds data types has certain limitations. For
example, if a variable with data type ‘long’ is executed then a test case is developed
to ensure that the input entered for the variable is within the acceptable limit of ‘long’
data type.

• Output values: A test case is developed to check whether the unit is producing the
expected output or not. For example, when two numbers, ‘2’ and ‘3’ are entered as
input in a program that multiplies two numbers, then a test case is developed to verify
that the program produces the correct output value, that is, ‘6’.

• Path coverage: There can be many conditions specified in a unit. For executing all
these conditions, many paths have to be traversed. For example, when a unit consists of
nested ‘if’ statements and all of them are to be executed, then a test case is developed to
check whether all these paths are traversed or not.

• Assumptions: For a unit to execute properly, certain assumptions are made. Test cases
are developed by considering these assumptions. For example, a unit may need a database
to be open. Then a test case is written to check that the unit reports errors, if such
assumptions are not met.

Software Testing

Self-Instructional Material 169

NOTES

• Abnormal terminations: A test case is developed to check the behaviour of a unit in
case of abnormal termination. For example, when a power cut results in termination of
a program due to shutting down of the computer, a test case is developed to check the
behaviour of a unit as a result of abnormal termination of program.

• Error messages: Error messages that appear when software is executed should be
short, precise, self explanatory, and free from grammatical mistakes. For example, if
‘print’ command is given when a printer is not installed, error message that appears
should be ‘Printer not installed’ instead of ‘Problem has occurred as no printer is installed
and hence unable to print’. In this case, a test case is developed to check whether the
error message is according to the condition occurring in the software or not.

(c) Unit Testing Procedure: Unit tests can be designed before coding begins or after the
code is developed. Review of this design information guides the creation of test cases,
which are used to detect errors in various units. Since a component is not an independent
program, two modules, drivers and stubs are used to test the units independently. Driver is
a module that passes input to the unit to be tested. It accepts test case data and then passes
the data to the unit being tested. After this, driver prints the output produced. Stub is a
module that works as unit referenced by the unit being tested. It uses the interface of the
subordinate unit, does minimum data manipulation, and returns control back to the unit
being tested.

Test Cases

Driver

Unit to be
Tested StubStub

Output

Figure 5.9 Unit Testing Environment

Note: Drivers and stubs are not delivered with the final software product. Thus, they represent
an overhead.

5.5.2 Integration Testing
Once unit testing is complete, integration testing begins. In integration testing, the units
validated during unit testing are combined to form a sub system. The purpose of integration
testing is to ensure that all the modules continue to work in accordance with user/customer
requirements even after integration.

The objective of integration testing is to take all the tested individual modules, integrate
them, test them again, and develop the software, which is according to design specifications.
The other points that are noted about integration testing are listed below:

• Integration testing ensures that all modules work together properly, are called correctly,
and transfer accurate data across their interfaces.

• Testing is performed with an intention to expose defects in the interfaces and in the
interactions between integrated components or systems.

• Integration testing examines the components that are new, changed, affected by a change,
or needed to form a complete system.

Software Engineering

170 Self-Instructional Material

NOTES

Component Code

Tested
Components

Unit Test Unit Test Unit Test Unit Test

Integration Test

Integrated Modules

Design Specs

Figure 5.10 Integration of Individual Modules

The big bang approach and incremental integration approach are used to integrate modules
of a program. In big bang approach, initially, all modules are integrated and then the entire
program is tested. However, when the entire program is tested, it is possible that a set of
errors is detected. It is difficult to correct these errors since it is difficult to isolate the exact
cause of the errors when program is very large. In addition, when one set of errors is
corrected, new sets of errors arise and this process continues indefinitely.

To overcome the above problem, incremental integration is followed. This approach tests
program in small increments. It is easier to detect errors in this approach because only a
small segment of software code is tested at a given instance of time. Moreover, interfaces
can be tested completely if this approach is used. Various kinds of approaches are used for
performing incremental integration testing, namely, top-down integration testing, bottom-
up integration testing, regression testing, and smoke testing.

(a) Top-down Integration Testing : In this testing, software is developed and tested by
integrating the individual modules, moving downwards in the control hierarchy. In top-
down integration testing, initially only one module known as the main control module is
tested. After this, all the modules called by it are combined with it and tested. This process
continues till all the modules in the software are integrated and tested.

It is also possible that a module being tested calls some of its subordinate modules. To
simulate the activity of these subordinate modules, a stub is written. Stub replaces modules
that are subordinate to the module being tested. Once, the control is passed to the stub, it
does minimal data manipulation, provides verification of entry, and returns control back to
the module being tested.

A1

A3

A8

A4A2

A6A5

A7

Figure 5.11 Top-down Integration

To perform top-down integration testing, a number of steps are followed, which are listed
below:

1. The main control module is used as a test driver and stubs are used to replace all the
other modules, which are directly subordinate to the main control module.

2. Subordinate stubs are then replaced one at a time with actual modules. The manner in
which the stubs are replaced depends on the approach (depth first or breadth first)
used for integration.

Software Testing

Self-Instructional Material 171

NOTES

3. Every time a new module is integrated, tests are conducted.

4. After tests are complete, another stub is replaced with the actual module.

5. Regression testing is conducted to ensure that no new errors are introduced.

Top-down integration testing uses either depth-first integration or breath-first integration
for integrating the modules. In depth-first integration, the modules are integrated starting
from left and then moves down in the control hierarchy. As shown in Figure 5.12(a),
initially, modules ‘A1’, ‘A2’, ‘A5’ and ‘A7’ are integrated. Then, module ‘A6’ integrates
with module ‘A2’. After this, control moves to the modules present at the centre of control
hierarchy, that is, module ‘A3’ integrates with module ‘A1’ and then module ‘A8’ integrates
with module ‘A3’. Finally, the control moves towards right, integrating module ‘A4’ with
module ‘A1’.

A1

A4A3

A8

A2

A5 A6

A7

(a) Depth-first Integration (b) Breadth-first Integration

Figure 5.12 Top-down Integration

In breadth-first integration, initially, all modules at the first level are integrated moving
downwards, integrating all modules at the next lower levels. As shown in Figure 5.12 (b),
initially, modules ‘A2’, ‘A3’, and ‘A4’ are integrated with module ‘A1’ and then it moves
down integrating modules ‘A5’ and ‘A6’ with module ‘A2’ and module ‘A8’ with module
‘A3’. Finally, module ‘A7’ is integrated with module ‘A5’.

The various advantages and disadvantages associated with top-down integration are listed
in Table 5.4.

Table 5.4 Advantages and Disadvantages of Top-down Integration

Advantages Disadvantages

• Behaviour of modules at high level is verified
early.

• None or only one driver is required.

• Modules can be added one at a time with each
step.

• Supports both breadth-first method and depth-
first method.

• Modules are tested in isolation from other
modules.

(b) Bottom-up Integration Testing: In this testing, individual modules are integrated starting
from the bottom and then moving upwards in the hierarchy. That is, bottom-up integration
testing combines and tests the modules present at the lower levels proceeding towards the
modules present at higher levels of control hierarchy.

• Delays the verification of behaviour of modules
present at lower levels.

• Large numbers of stubs are required in case the
lowest level of software contains many func-
tions.

• Since stubs replace modules present at lower
levels in the control hierarchy, no data flows
upward in program structure. To avoid this,
tester has to delay many tests until stubs are
replaced with actual modules or has to integrate
software from the bottom of the control hierar-
chy moving upward.

• Module cannot be tested in isolation from other
modules because it has to invoke other modules.

Software Engineering

172 Self-Instructional Material

NOTES

Some of the low-level modules present in software are integrated to form clusters or builds
(collection of modules). After clusters are formed, a driver is developed to co-ordinate test
case input and output and then, the clusters are tested. After this, drivers are removed and
clusters are combined moving upwards in the control hierarchy.

Figure 5.13 shows modules, drivers, and clusters in bottom-up integration. The low-level
modules ‘A4’, ‘A5’, ‘A6’, and ‘A7’ are combined to form cluster ‘C1’. Similarly, modules
‘A8’, ‘A9’, ‘A10’, ‘A11’, and ‘A12’ are combined to form cluster ‘C2’. Finally, modules
‘A13’ and ‘A14’ are combined to form cluster ‘C3’. After clusters are formed, drivers are
developed to test these clusters. Drivers ‘D1’, ‘D2’, and ‘D3’ test clusters ‘C1’, ‘C2’, and
‘C3’ respectively. Once these clusters are tested, drivers are removed and clusters are
integrated with the modules. Cluster ‘C1’ and cluster ‘C2’ are integrated with module
‘A2’. Similarly, cluster ‘C3’ is integrated with module ‘A3’. Finally, both the modules ‘A2’
and ‘A3’ are integrated with module ‘A1’.

A1

A3

D3D2D1

A2

A13

A14A12A11A10

A8 A9A5A4

A6

A7

C3
Cluster

C2
Cluster

C1
Cluster

Figure 5.13 Bottom-up Integration

The various advantages and disadvantages associated with bottom-up integration are listed
in Table 5.5.

Table 5.5 Advantages and Disadvantages of Bottom-up Integration

Advantages Disadvantages

� Behaviour of modules at lower levels is verified
earlier.

� No stubs are required.
� Uncovers errors that occur at the lower levels in

software.
� Modules are tested in isolation from other

modules.

(c) Regression Testing: Software undergoes changes every time a new module is added
as part of integration testing. Changes can occur in the control logic or input/output media,
and so on. It is possible that new data flow paths are established as a result of these
changes, which may cause problems in the functioning of some parts of the software that
was previously working perfectly. In addition, it is also possible that new errors may
surface during the process of correcting existing errors. To avoid these problems, regression
testing is used.

� Delays in verification of modules at higher
levels.

� Large numbers of drivers are required to
test clusters.

Software Testing

Self-Instructional Material 173

NOTES

Unit Tested
Components

being Integrated

Unit added
during Integration

Testing

Integration
Testing

Figure 5.14 Addition of Module in Integration Testing

Regression testing ‘re-tests’ the software or part of it to ensure that no previously working
components, functions, or features fail as a result of the error correction process and
integration of modules. Regression testing is considered an expensive but a necessary
activity since it is performed on modified software to provide knowledge that changes do
not adversely affect other system components. Thus, regression testing can be viewed as
a quality control tool that ensures that the newly modified code still complies with its
specified requirements and that unmodified code has not been affected by the change. For
instance, suppose a new function is added to the software, or a module is modified to
improve its response time. The changes may introduce errors into the software that was
previously correct. For example, suppose part of the code written below works properly.

x = b + 1 ;
proc (z) ;
b = x + 2 ; x = 3;

Now suppose in an attempt to optimise the code it is transformed into the following:

proc (z) ;

b = b + 3 ;

x = 3 ;

This may result in an error if procedure ‘proc’ accesses variable ‘x’. Thus, testing should
be organised with the purpose of verifying possible degradations of correctness or other
qualities due to later modifications. During regression testing, existing test cases are executed
on the modified software so that errors can be detected. Test cases for regression testing
consist of three different types of tests, which are listed below:

• Tests that are used to execute software function.

• Tests that check the function, which is likely to be affected by changes.

• Tests that check software modules that have already been modified.

The various advantages and disadvantages associated with regression testing are listed in
Table 5.6.

Software Engineering

174 Self-Instructional Material

NOTES

Table 5.6 Advantages and Disadvantages of Regression Testing

Advantages Disadvantages

� Ensures that the unchanged parts of software
work properly.

� Ensures that all errors that have occurred in
software due to modifications are corrected and
are not affecting the working of software.

(d) Smoke Testing Smoke testing is defined as a subset of all defined test cases that cover
the main functionality of a component or system, to ascertain that the most crucial functions
of a program work properly. It is mainly used for time critical software and allows the
development team to assess the software frequently.

Smoke testing is performed when software is under development. As the modules of
software are developed, they are integrated to form a ‘cluster’. After the cluster is formed,
certain tests are designed to detect errors that prevent the cluster to perform its function.
Next, the cluster is integrated with other clusters thereby leading to the development of the
entire software, which is smoke tested frequently. A smoke test should possess the following
characteristics:

• Should run quickly.

• Should try to cover a large part of software and if possible the entire software.

• Should be easy for testers to perform smoke testing on software.

• Should be able to detect all errors present in the cluster being tested.

• Should try to find showstopper errors.

Generally, smoke testing is conducted every time a new cluster is developed and integrated
with the existing cluster. Smoke testing takes minimum time to detect errors that occur due
to integration of clusters. This reduces the risk associated with the occurrence of problems,
such as introduction of new errors in software. A cluster cannot be sent for further testing
unless smoke testing is performed on it. Thus, smoke testing determines whether the
cluster is suitable to be sent for further testing or not. Other benefits associated with smoke
testing are listed below:

• Minimises the risks, which are caused due to integration of different
modules: Since smoke testing is performed frequently on software, it allows the testers
to uncover errors as early as possible, thereby reducing the chance of causing severe
impact on the schedule when there is delay in uncovering errors.

• Improves quality of final software: Since smoke testing detects both functional and
architectural errors as early as possible, they are corrected early, thereby resulting in
high quality software.

• Simplifies detection and correction of errors: As smoke testing is performed almost
every time a new code is added, it becomes clear that the probable cause of errors is the
new code.

• Assesses progress easily: Since smoke testing is performed frequently, it keeps track
of the continuous integration of modules, that is, the progress of software development.
This boosts the morale of software developers.

Integration Test Documentation: To understand the overall procedure of software
integration, a document known as test specification is prepared. This document provides
information in the form of test plan, a test procedure, and actual test results.

� Time consuming activity.

� Considered to be expensive.

Software Testing

Self-Instructional Material 175

NOTES

1.0 Scope of Testing
2.0 Test Plan

2.1 Test Phases and Builds
2.2 Schedule
2.3 Overhead Software
2.4 Environment and Resources

3.0 Test Procedure ‘n’
3.1 Order of Integration
 3.1.1 Purpose
 3.1.2 Modules to be Tested

3.2 Unit Tests for Modules in Build
3.3 Description of Test for Module ‘m’
3.4 Overhead Software Description
3.5 Expected Results
3.6 Test Environment
3.7 Special Tools or Techniques
3.8 Test Case Data
3.9 Expected Results for Build ‘n’

4.0 Actual Test Results

5.0 References
6.0 Appendices

Figure 5.15 Integration Test Specification

Figure 5.15 shows integration test documentation. This template comprises of various
sections, which are listed below:

• Scope of testing: Provides overview of the specific functional, performance, and design
characteristics that are to be tested. In addition, scope describes the completion criteria
for each test phase and keeps record of the constraints that occur in the schedule.

• Test plan: Describes the strategy for integration of software. Testing is divided into
phases and builds. Phases describe distinct tasks that involve various sub-tasks. On the
other hand, builds are group of modules that correspond to each phase. Both phases and
builds address specific functional and behavioural characteristics of the software. Some
of the common test phases that require integration testing include user interaction, data
manipulation and analysis, display outputs, database management, and so on. Every test
phase consists of a functional category within the software. Generally, these phases can
be related to a specific domain within the architecture of software. The criteria commonly
considered for all test phases include interface integrity, functional validity, information
content, and performance.

Note that a test plan should be customised to local requirements, however it should
contain an integration strategy (in the Test Plan) and testing details (in Test Procedure).
Test plan should also include the following:
� A schedule for integration, which should include the start and end dates given for

each phase.
� A description of overhead software, concentrating on those that may require special

effort.
� A description of the testing environment.

• Test procedure ‘n’: Describes the order of integration and unit tests for modules.
Order of integration provides information about the purpose and the modules to be
tested. Unit tests are conducted for the modules that are built along with the description
of tests for these modules. In addition, test procedure describes the development of
overhead software, expected results during integration testing, and description of test
case data. The test environment and tools or techniques used for testing are also mentioned
in test procedure.

Software Engineering

176 Self-Instructional Material

NOTES

• Actual test results: Provides information about actual test results and problems that
are recorded in the test report. With the help of this information, it is easy to carry out
software maintenance.

• References: Describes the list of references that are used for preparing user
documentation. Generally, references include books and websites.

• Appendices: Provides information about integration test document. Appendices are in
the form of supplementary material that is provided at the end of the document.

5.5.3 System Testing
Software is integrated with other elements, such as hardware, people, and database to
form a computer-based system. This system is then checked for errors using system
testing. IEEE defines system testing as “a testing conducted on a complete, integrated
system to evaluate the system’s compliance with its specified requirements”.

System testing compares the system with the non-functional system requirements, such as
security, speed, accuracy, and reliability. The
emphasis is on validating and verifying the
functional design specifications and examining
how modules work together. This testing also
evaluates external interfaces to other
applications and utilities or the operating
environment.

During system testing, associations between
objects (like fields), control and infrastructure
(like time management, error handling), feature
interactions or problems that occur when
multiple features are used simultaneously and
compatibility between previously working
software releases and new releases are tested.
System testing also tests some properties of
the developed software, which are essential for users. These properties are listed below:

• Usable: Verifies that developed software is easy to use and is understandable.
• Secure: Verifies that access to important or sensitive data is restricted even for those

individuals who have authority to use software.
• Compatible: Verifies that developed software works correctly in conjunction with

existing data, software and procedures.
• Documented: Verifies that manuals that give information about developed software are

complete, accurate and understandable.
• Recoverable: Verifies that there are adequate methods for recovery in case of failure.

System testing requires many test runs because it entails feature-by-feature validation of
behaviour using a wide range of both normal and erroneous test inputs and data. Test plan
plays an important role in system testing because it contains descriptions of the test cases,
the sequence in which the tests must be executed, and the documentation needed to be
collected in each run. When an error or defect is discovered, previously executed system
tests must be rerun after the repair is made to make sure that the modifications do not lead
to other problems.
As part of system testing, conformance tests and reviews can be run to verify that the
application conforms to corporate or industry standards in terms of portability, interoperability,
and compliance. For example, to enhance software portability, a corporate standard may
be that SQL queries must be written so that they work for both Oracle and DB2 databases.

Figure 5.16 Types of System Testing

Software Testing

Self-Instructional Material 177

NOTES

System testing is deemed to be complete when the actual results and expected results are
either in line or in difference with the inputs specified by the user. Various kinds of testing
performed as a part of system testing are recovery testing, security testing, stress testing
and performance testing.

(a) Recovery Testing: Recovery testing is a system test, which forces the system to fail in
different ways and verifies that the software recovers from expected or unexpected events
without loss of data or functionality. Events, which lead to failure, include system crashes,
hardware failures, unexpected loss of communication, and other catastrophic problems.

To recover from any type of failure, system should be fault tolerant. Fault tolerant system
can be defined as a system which continues to perform the intended functions even when
errors are present in it. In case the system is not fault tolerant, it needs to be corrected
within a specified time limit after failure has occurred so that the software performs its
functions in a desired manner.

Test cases generated for recovery testing not only show the presence of errors in system,
but also provide information about the data lost due to problems, such as power failure and
improper shutting down of computer system. Recovery testing also ensures that appropriate
methods are used to restore the lost data. Other advantages of recovery testing are listed
below:

• Checks whether the backup data is saved properly or not.
• Ensures that the backup data is stored in a secure location.
• Ensures that proper detail of recovery procedures is maintained.

(b) Security Testing: Systems with sensitive information are generally the target of improper
or illegal use. Therefore, protection mechanisms are required to restrict unauthorised access
to the system. To avoid any improper usage, security testing is performed which identifies
and removes software flaws that may potentially lead to security violations. In security
testing, the tester plays the role of the individual trying to penetrate the system. For this,
tester performs tasks, such as cracking the password, attacking the system with custom
software, which is used to break-down any protection mechanisms built to protect the
system, and intentionally produces errors in the system. This testing focuses on the two
areas of security listed below:

• Application security: Verifies that user can access only those data and functions for
which system developer or user of system has given permission. This security is referred
to as authorisation.

• System security: Verifies that only the users, who have permission to access the system,
are accessing it. This security is referred to as authentication.

Unauthorised access can be made by ‘outside’ individuals for fun or personal gain or by
disgruntled/dishonest employees. And if people are able to gain access to the system, then,
there is a possibility that a large amount of important data can be lost resulting in huge loss
to the organisation or individuals.

Security testing verifies that system accomplishes all the security requirements and validates
the effectiveness of these security measures. Other advantages associated with security
testing are listed below:

• Determines whether proper techniques are used to identify security risks or not.

• Verifies that appropriate protection techniques are followed to secure the system.

• Ensures that the system is able to protect its data and maintain its functionality.

• Conducts tests to ensure that the implemented security measures are working properly.

Software Engineering

178 Self-Instructional Material

NOTES

(c) Stress Testing: Stress testing is designed to test the software with abnormal situations.
These abnormal situations arise when resources are required in abnormal quantity, frequency,
or volume. For example, the abnormal conditions may arise when:

• There are higher rates of interrupts when the average rate is low.

• Test cases are developed, which cause ‘thrashing’ in a virtual operating system.

• There are test cases that cause excessive ‘hunting’ for data on disk systems.

IEEE defines stress testing as “testing conducted to evaluate a system or component at or
beyond the limits of its specified requirements”. For example, if a software system is
developed to execute 100 statements at a time, then stress testing may generate 110 statements
to be executed. This load may increase until the software fails. Thus, stress testing specifies
the way in which a system reacts when it is made to operate beyond its performance and
capacity limits. The other advantages associated with stress testing are listed below:

• Indicates the expected behaviour of a system when it reaches the extreme level of its
capacity.

• Executes a system till it fails. This enables the testers to determine the difference between
the expected operating conditions and the failure conditions.

• Determines the part of a system that leads to errors.

• Determines the amount of load that causes a system to fail.

• Evaluates a system at or beyond the limits of its performance capacity.

(d) Performance Testing: Performance testing checks the run-time performance of the
software (especially real-time and embedded systems) in the context of the entire computer
based system. This testing is used to verify the load, volume, and response times as defined
by requirements. Performance testing also determines and informs the software developer
about the current performance of the software under various parameters (like condition to
complete software within a specified time limit).

Often performance tests and stress tests are used together and require both software and
hardware instrumentation of the system. By instrumenting a system, the tester can reveal
situations that lead to conditions of system degradation and system failure. While performance
tests evaluate response time, memory usage, throughput, device utilisation, and execution
time, stress testing pushes the system to or beyond its specified limits to evaluate its
robustness and error handling capabilities. Performance testing is used to test several factors
that play an important role in improving the overall performance of the system. Some of
these factors are listed below:

• Speed: Refers to the capability of a system to respond to users as quickly as possible.
Performance testing verifies whether the response is quick enough or not.

• Scalability: Refers to the capability of a system to handle the load given to it.
Performance testing verifies whether the system is able to handle the load expected by
users or not.

• Stability: Refers to the capability of a system to prevent itself from failure as long as
possible. Performance testing verifies whether the system remains stable under expected
and unexpected loads.

The outputs produced during performance testing are provided to the system developer.
Based on these outputs, the developer makes changes to the system in order to remove the
errors. This testing also checks the system characteristics such as its reliability. Other
advantages associated with performance testing are listed below:

Software Testing

Self-Instructional Material 179

NOTES

• Evaluates the compliance of a system or component with specified performance
requirements.

• Compares different systems to determine which system performs better.

5.5.4 Validation Testing
Validation testing, also known as acceptance testing is performed to determine whether
software meets all the functional, behavioural, and performance requirements or not. IEEE
defines acceptance testing as a “formal testing with respect to user needs, requirements, and
business processes conducted to determine whether or not a system satisfies the acceptance
criteria and to enable the user, customers or other authorised entity to determine whether or
not to accept the system”.

During validation testing, software is tested and evaluated by a group of users either at the
developer’s site or user’s site. This enables the users to test the software themselves and
analyse whether it is meeting their requirements or not. To perform validation testing, a
predetermined set of data is given to software as input. It is important to know the expected
output before performing validation testing so that outputs produced by software as a
result of testing can be compared with them. Based on the results of tests, users decide
whether to accept or reject the software. That is, if both outputs (expected and produced)
match, then software is considered to be correct and is accepted, otherwise, it is rejected.

The various advantages and disadvantages associated with validation testing are listed in
Table 5.7.

Table 5.7 Advantages and Disadvantages of Acceptance Testing

Advantages Disadvantages

� Gives user an opportunity to ensure that software
meets user requirements, before actually accepting
it from the developer.

� Enables both users and software developers to
identify and resolve problems in software.

� Determines the readiness (state of being ready to
operate) of software to perform operations.

� Decreases the possibility of software failure to a
large extent.

Since the software is intended for large number of users, it is not possible to perform
acceptance testing with all the users. Therefore, organisations engaged in software
development use alpha and beta testing as a process to detect errors by allowing a limited
number of users to test the software.

(a) Alpha Testing: Alpha testing is conducted by the users at the developer’s site. In other
words, this testing assesses the performance of software in the environment in which it is
developed. On completion of alpha testing, users report the errors to software developers
so that they can correct them. Note that alpha testing is often employed as a form of
internal acceptance testing.

� Although, users provide a valuable
feedback, they do not have a detailed
knowledge of software code.

� Since testing is not users’ primary
occupation so they may fail to observe or
accurately report some software failures.

Software Engineering

180 Self-Instructional Material

NOTES
Software

Developer Site Customer Site

Customer Tests

Figure 5.17 Alpha Testing

The advantages of alpha testing are listed below:

• Identifies all the errors present in the software.

• Checks whether all the functions mentioned in the requirements are implemented
properly in software or not.

(b) Beta Testing: Beta testing assesses performance of software at user’s site. This testing
is ‘live’ testing and is conducted in an environment, which is not controlled by the developer.
That is, this testing is performed without any interference from the developer. Beta testing
is performed to know whether the developed software satisfies the user requirements and
fits within the business processes or not.

Figure 5.18 Beta Testing

Note that beta testing is often employed as a form of external acceptance testing in order to
acquire feedback from the ‘market’. Often limited public tests known as beta-versions
are released to groups of people so that further testing can ensure that the end product has
few faults or bugs. Sometimes, beta-versions are made available to the open public to
increase the feedback.

The advantages of beta testing are listed below:

• Evaluates the entire documentation of software. For example, it examines the detailed
description of software code, which forms a part of documentation of software.

• Checks whether software is operating successfully in user environment or not.

5.6 TESTING TECHNIQUES

Once the software is developed it should be tested in a proper manner before the system is
delivered to the user. For this, two techniques that provide systematic guidance for designing
tests are used. These techniques are listed below:

• Once the internal working of software is known, tests are performed to ensure that all
internal operations of software are performed according to specifications. This is referred
to as white box testing.

Check Your Progress
9. What is unit testing?

10. Explain top-down and
bottom-up integration
testing.

11. Why is integration test
document maintained?

12. Define system testing and
its various types.

13. Define validation testing
and its various types.

Software Testing

Self-Instructional Material 181

NOTES

• Once the specified function for which software has been designed is known, tests are
performed to ensure that each function is working properly. This is referred to as black
box testing.

TechniquesWhite Box
Testing

Black Box
Testing

Figure 5.19 Testing Techniques

5.6.1 White Box Testing
White box testing, also known as structural testing is performed to check the internal
structure of a program. To perform white box testing, tester should have a thorough
knowledge of the program code and the purpose for which it is developed. The basic
strength of this testing is that the entire software implementation is included while testing is
performed. This facilitates error detection even when the software specification is vague
or incomplete.
The objective of white box testing is to ensure that the test cases (developed by software
testers by using white box testing) exercise each path through a program. That is, test
cases ensure that all internal structures in the program are developed according to design
specifications. The test cases also ensure that:
• All independent paths within the program have been executed at least once.
• All internal data structures are exercised to ensure validity.
• All loops (simple loops, concatenated loops, and nested loops) are executed at their

boundaries and within operational bounds.
• All the segments present between the control structures (like ‘switch’ statement) are

executed at least once.
• Each branch (like ‘case’ statement) is exercised at least once.
• All the branches of the conditions and the combinations of these conditions are executed

at least once. Note that for testing all the possible combinations, a ‘truth table’ is used
where all logical decisions are exercised for both true and false paths.

White Box
Testing

Paths

Branches

Seg
men

ts

Condit
io

ns

Loops

Figure 5.20 White Box Testing

 The various advantages and disadvantages associated with white box testing are listed
in Table 5.8.

Software Engineering

182 Self-Instructional Material

NOTES

Table 5.8 Advantages and Disadvantages of White Box Testing

Advantages Disadvantages

� Covers the larger part of the program code while
testing.

� Uncovers typographical errors.

� Detects design errors that occur when incorrect
assumptions are made about execution paths.

The effectiveness of white box testing is commonly expressed in terms of test or code
coverage metrics, which measure the fraction of code exercised by test cases. The various
types of testing, which occur as part of white box testing are basis path testing, control
structure testing, and mutation testing.

(a) Basis Path Testing: Basis path testing enables
the software tester to generate test cases in order
to develop a logical complexity measure of a
component-based design (procedural design). This
measure is used to specify the basis set of
execution paths. Here, logical complexity refers
to the set of paths required to execute all statements
present in the program. Note that test cases are
generated to make sure that every statement in a
program has been executed at least once.

Creating Flow Graph Flow graph is used to show
the logical control flow within a program. To
represent the control flow, flow graph uses a notation which is shown in Figure 5.22.

Sequence If While Until Case

Figure 5.22 Flow Graph Notation

Flow graph uses different symbols, namely, circles and arrows to represent various
statements and flow of control within the program. Circles represent nodes, which are
used to depict the procedural statements present in the program. A series of process boxes
and a decision diamond in a flow chart can be easily mapped into a single node. Arrows
represent edges or links, which are used to depict the flow of control within the program.
It is necessary for every edge to end in a node irrespective of whether it represents a
procedural statement or not. In a flow graph, area bounded by edges and nodes is known
as a region. While counting regions, the area outside the graph is also considered as a
region. Flow graph can be easily understood with the help of a diagram. For example, in
Figure 5.23(a) a flow chart has been depicted, which has been represented as a flow graph
in Figure 5.23(b).

� Tests that cover most of the program code may
not be good for assessing the functionality of
surprise (unexpected) behaviours and other
testing goals.

� Tests based on design may miss other system
problems.

� Tests cases need to be changed if implementation
changes.

Figure 5.21 Types of White Box Testing

Ba
sis

 P
at

h
Te

st
in

g

Control Structure Testing

White Box
Testing

Mutation Testing

Software Testing

Self-Instructional Material 183

NOTES

9

8

6

54

3 7

1

2
R4

R1

R2

R3

3

54

6

7

Regions

9

8

Edges

1

2 Nodes

(a) Flow Chart (b) Flow Graph

Figure 5.23 Creating Flow Graph

Note that a node that contains a condition is known as predicated node, which contains
one or more edges emerging out of it. For example, in Figure 5.23(b), node 2 and node 3
represent the predicated nodes.

Finding Independent Paths: A path through the program, which specifies a new condition
or a minimum of one new set of processing statements, is known as an independent path.
For example, in nested ‘if’ statements there are several conditions that represent independent
paths. Note that a set of all independent paths present in the program is known as basis set.

A test case is developed to ensure that all the statements present in the program are executed
at least once during testing. For example, all the independent paths in Figure 5.23(b) are
listed below:

P1: 1 – 9

P2: 1 – 2 – 7 – 8 – 1 – 9

P3: 1 – 2 – 3 – 4 – 6 – 8 – 1 – 9

P4: 1 – 2 – 3 – 5 – 6 – 8 – 1 – 9

where ‘P1’, ‘P2’, ‘P3’, and ‘P4’ represents different independent paths present in the
program.

The number of independent paths present in the program is calculated using cyclomatic
complexity, which is defined as the software metric that provides quantitative measure of
the logical complexity of a program. This software metric also provides information about
the number of tests required to ensure that all statements in the program are executed at
least once.

Cyclomatic complexity can be calculated by using any of the three methods listed below:

1. The total number of regions present in the flow graph of a program represents the
cyclomatic complexity of the program. For example, in Figure 5.23(b), there are four
regions represented by ‘R1’, ‘R2’, ‘R3’, and ‘R4’, hence, the cyclomatic complexity
is four.

2. Cyclomatic complexity can be calculated according to the formula given below:
CC = E – N + 2

Software Engineering

184 Self-Instructional Material

NOTES

where, ‘CC’ represents the cyclomatic complexity of the program, ‘E’ represents the
number of edges in the flow graph, and ‘N’ represents the number of nodes in the flow
graph. For example, in Figure 5.23(b), ‘E’ = ‘11’, ‘N’ = ‘9’. Therefore, CC = 11 – 9
+ 2 = 4.

3. Cyclomatic complexity can be also calculated according to the formula given below:

CC = P + 1

where ‘P’ is the number of predicate nodes in the flow graph. For example, in Figure
5.23(b), P = 3. Therefore, CC = 3 + 1 = 4.

Note: Cyclomatic complexity can be calculated manually for small program suites, but
automated tools are preferred for most operational environments.

Deriving Test Cases: In this, basis path testing is presented as a series of steps and test
cases are developed to ensure that all statements present in the program are executed
during testing. While performing basis path testing, initially the basis set (independent
paths in the program) is derived. The basis set can be derived using the steps given below:

1. Draw the flow graph of the program: A flow graph is constructed using symbols
previously discussed. For example, a program to find the greater of two numbers is
listed below:
procedure greater;

integer: a, b, c = 0;

 1 enter the value of a;

 2 enter the value of b;

 3 if a > b then

 4 c = a;

else

 5 c = b;

 6 end greater

Flow graph for the above program is shown in Figure 5.24.

2. Determine the cyclomatic complexity of the program using flow graph: The cyclomatic
complexity for flow graph depicted in 6.26 can be calculated as follows:

CC = 2 regions

 Or

CC = 6 edges – 6 nodes + 2 = 2

 Or

CC = 1 predicate node + 1 = 2

3. Determine all the independent paths present in the program using flow graph: For the
flow graph shown in Figure 5.24, the independent paths are listed below:

P1 = 1 – 2 – 3 – 4 – 6

P2 = 1 – 2 – 3 – 5 – 6

4. Prepare test cases: Test cases are prepared to implement the execution of all the
independent paths in the basis set. Each test case is executed and compared with the
desired results.

Generating Graph Matrix: Graph matrix is used to develop a software tool that in turn
helps in carrying out basis path testing. Graph matrix can be defined as a data structure,

Figure 5.24 Flow Graph
to Find the Greater

Between Two Numbers

1

2
R2

3

5

6

4 R1

Software Testing

Self-Instructional Material 185

NOTES

which represents the flow graph of a program in a tabular form. This matrix is also used to
evaluate the control structures present in the program during testing.

Graph matrix consists of rows and columns that represent nodes present in the flow graph.
Note that the size of graph matrix is equal to the number of nodes present in the flow graph.
Every entry in the graph matrix is assigned some value known as link weight. Adding link
weights to each entry makes graph matrix a useful tool for evaluating the control structure
of the program during testing.

Flow graph shown in the Figure 5.25(a) is depicted as a graph matrix in Figure 5.25(b). In
Figure 5.25(a), numbers are used to identify each node in a flow graph, while letters are
used to identify edges in a flow graph. In Figure 5.25(b), a letter entry is made when there
exists a connection between two nodes in the flow graph. For example, node 3 is connected
to the node 6 by edge ‘d’ and node 4 is connected to node 2 by edge ‘c’, and so on.

h

d

e f

j

g

i

c

ba
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) Flow Graph (b) Graph Matrix

Figure 5.25 Generating Graph Matrix

(b) Control Structure Testing: Control structure testing is used to enhance the coverage
area by testing various control structures (which include logical structures and loops)
present in the program. Note that basis path testing is used as one of the techniques for
control structure testing. The various types of testing performed under control structure
testing are condition testing, data flow testing, and loop testing.

Condition Testing: Condition testing is a test case design method, which ensures that the
logical conditions and decision statements are free from errors. The errors present in
logical conditions can be incorrect Boolean operators, missing parenthesis in a Boolean
expression, error in relational operators, arithmetic expressions, and so on.

The common types of logical conditions that are tested using condition testing are listed
below:

• A relational expression, such as ‘E1 op E2’, where ‘E1’ and ‘E2’ are arithmetic
expressions and ‘op’ is an operator.

• A simple condition, such as any relational expression preceded by a ‘NOT’ (~) operator.
For example, (~ E1), where ‘E1’ is an arithmetic expression and ‘~’ represents ‘NOT’
operator.

• A compound condition, which is composed of two or more simple conditions, Boolean
operators, and parenthesis. For example, (E1 & E2) | (E2 & E3), where ‘E1’, ‘E2’, and
‘E3’ are arithmetic expressions and ‘&’ and ‘|’ represents ‘AND’ and ‘OR’ operators.

• A Boolean expression consisting of operands and a Boolean operator, such as ‘AND’,
‘OR’, ‘NOT’. For example, ‘A | B’ is a Boolean expression, where ‘A’ and ‘B’ are
operands and ‘|’ represents ‘OR’ operator.

1

2

4

3

7

65

8

g n

e l
d

j

c

a b i

Software Engineering

186 Self-Instructional Material

NOTES

Condition testing is performed using different strategies, namely, branch testing, domain
testing, and branch and relational operator testing. Branch testing executes each branch
(like ‘if’ statement) present in the module of a program at least once to detect all the errors
present in the branch. Domain testing tests relational expressions present in a program.
For this, domain testing executes all statements of the program that contain relational
expressions. Branch and relational operator testing tests the branches present in the
module of a program using condition constraints. For example,

if a > 10

then

print big

In this case, branch and relational operator testing verifies that the output produced by the
execution of the above code is ‘big’ only if the value of variable ‘a’ is greater than ‘10’.

Data Flow Testing: Data flow testing is a test design technique in which test cases are
designed to execute definition and uses of variables in the program. This testing ensures
that all variables are used properly in a program. To specify test cases, data flow based
testing uses information, such as location at which the variables are defined and used in the
program.

To perform data flow based testing, a definition-use graph is constructed by associating
variables with nodes and edges in the control flow graph. Once these variables are attached
with nodes and edges of control flow graph, test cases can easily determine which variable
is used in which part of a program and how data is flowing in the program. Thus, data flow
of a program can be tested easily using specified test cases.

Loop Testing: Loop testing is used to check the validity of loops present in the program
modules. Generally, there exist four types of loops, which are listed below:

• Simple loops: Refers to a loop that has no other loops in it. Consider a simple loop of
size ‘n’. Size ‘n’ of the loop indicates that the loop can be traversed ‘n’ times, that is, ‘n’
passes are made through the loop. To test simple loops, a number of steps are followed,
which are listed below:

1. Skip the entire loop.

2. Traverse the loop only once.

3. Traverse the loop two times.

4. Make ‘a’ passes through the loop, where ‘a’ is a number less than the size of loop ‘n’.

5. Traverse the loop n – 1, n, n + 1 times.

• Nested loops: Loops within loops are known as nested loops. While testing nested loops,
number of tests increases as the level of nesting increases. The steps followed for
testing nested loops are listed below:

1. Start with the inner loop and set values of all the outer loops to minimum.

2. Test the inner loop using the steps followed for testing simple loops while holding the
outer loops at their minimum parameter values. Add other tests for values that are
either out-of-range or are eliminated.

3. Move outwards, conducting tests for the next loop. However, keep the nested loops
to ‘typical’ values and outer loops at their minimum values.

4. Continue testing until all loops are tested.

• Concatenated loops: Refers to the loops which contain several loops that may or may
not depend on each other. If the loops are independent from each other, then steps in

Software Testing

Self-Instructional Material 187

NOTES

simple loops are followed. Otherwise, if the loops are dependent on each other, then
steps in nested loops are followed.

• Unstructured loops: This type of loop should be redesigned so that the use of structured
programming constructs can be reflected.

Simple Loop

Unstructured
Loop

Concatenated
Loop

Nested Loop

Figure 5.26 Types of Loops

(c) Mutation Testing Mutation testing is a white box method where errors are ‘purposely’
inserted into a program (under test) to verify whether the existing test case is able to detect
the error or not. In this testing, mutants of the program are created by making some
changes in the original program. The objective is to check whether each mutant produces
an output that is different from the output produced by the original program.

In mutation testing, test cases that are able to ‘kill’ all the mutants should be developed.
This is accomplished by testing mutants with the developed set of test cases. There can be
two possible outcomes when the test cases test the program, either the test case detects
the faults or fails to detect faults. If faults are detected, then necessary measures are taken
to correct them.

When no faults are detected, it implies that either the program is absolutely correct or the
test case is inefficient to detect the faults. Therefore it can be said that mutation testing is
performed to check the effectiveness of a test case. That is, if a test case is able to detect
these ‘small’ faults (minor changes) in a program, then it is likely that the same test case
will be equally effective in finding real faults.

To perform mutation testing, a number of steps are followed, which are listed below:

1. Create mutants of a program.

2. Check both program and its mutants using test cases.

3. Find the mutants that are different from the main program. A mutant is said to be
different from the main program if it produces an output, which is different from the
output produced by the main program.

4. Find mutants that are equivalent to the program, that is, the mutants that produce same
outputs as produced by the program.

Software Engineering

188 Self-Instructional Material

NOTES

5. Calculate the mutation score using the formula given below:

(M = D/N – E)

 where, M = Mutation score
N = Total number of mutants of the program.
D = Number of mutants different from the main program.
E = Total number of mutants that are equivalent to the main program.

6. Repeat steps 1 to 5 till the mutation score is ‘1’.

Program

Test Case

Mutant
Generation

Test Execution

Error not Detected Error Detected

Mutant A1
Mutant A2

Mutant A3
Mutant A4

Mutant A5
Mutant A6

Figure 5.27 Mutation Testing

However, mutation testing is very expensive to run on large programs. Thus, certain tools
are used to run mutation tests on large programs. For example, ‘Jester’ is used to run
mutation tests on java code. This tool targets the specific areas of program code, such as
changing constants and Boolean values.

5.6.2 Black Box Testing
Black box testing, also known as functional testing, checks the functional requirements
and examines the input and output data of these requirements. The functionality is determined
by observing the outputs to corresponding inputs. For example, when black box testing is
used, the tester should only know the ‘legal’ inputs and what the expected outputs should
be, but not how the program actually arrives at those outputs.

Events

Input

Requirements

Output

Figure 5.28 Black Box Testing

The black box testing is used to find errors listed below:

• Interface errors, such as functions, which are unable to send or receive data to/from
other software.

• Incorrect functions that lead to undesired output when executed.

• Missing functions and erroneous data structures.

• Erroneous databases, which lead to incorrect outputs when software uses the data
present in these databases for processing.

Software Testing

Self-Instructional Material 189

NOTES

• Incorrect conditions due to which the functions produce
incorrect outputs when they are executed.

• Termination errors, such as certain conditions due to
which function enters a loop that forces it to execute
indefinitely.

In this testing, various inputs are exercised and the outputs
are compared against specification to validate the
correctness. Note that test cases are derived from these
specifications without considering implementation details
of the code. The outputs are compared with user
requirements and if they are as specified by the user, then
the software is considered to be correct, else the software
is tested for the presence of errors in it.

The various advantages and disadvantages associated with black box testing are listed in
Table 5.9.

Table 5.9 Advantages and Disadvantages of Black Box Testing.

Advantages Disadvantages

� Tester requires no knowledge of implementation
and programming language used.

� Reveals any ambiguities and inconsistencies in
the functional specifications.

� Efficient when used on larger systems.

� Non-technical person can also perform black box
testing.

The various methods used in black box testing
are equivalence class partitioning, boundary
value analysis, orthogonal array testing, and
cause effect graphing. In equivalence class
partitioning the test inputs are classified into
equivalence classes such that one input
checks (validates) all the input values in that
class. In boundary value analysis the
boundary values of the equivalence classes
are considered and tested. In orthogonal
array testing faults in the logic of the
software component are considered and
tested. In cause-effect graphing, cause-
effect graphs are used to design test cases,
which provides all the possible combinations of inputs to the program.

(a) Equivalence Class Partitioning : Equivalence class partitioning method tests the validity
of outputs by dividing the input domain into different classes of data (known as equivalence
classes) using which test cases can be easily generated. Test cases are designed with the
purpose of covering each partition at least once. If a test case is able to detect all the errors
in the specified partition, then the test case is said to be an ideal test case.

Figure 5.29 Types of Error
Detection in Black Box

Testing

� Only small number of possible inputs can be
tested as testing every possible input consumes
a lot of time.

� There can be unnecessary repetition of test inputs
if the tester is not informed about the test cases
that software developer has already tried.

� Leaves many program paths untested.

� Cannot be directed towards specific segments of
code, hence is more error prone.

Figure 5.30 Types of Black Box Testing

Boun
da

ry
 V

al
ue

s

Il legal Values

Expected Inputs

Black Box
Testing

Equivalence
Class

Partitioning

Cause
Effect

Graphing

Orthogonal
Array

Testing

Boundary
Value

Analysis

Black Box
Testing

Software Engineering

190 Self-Instructional Material

NOTES

Input Domain
Partitioned

Four Sub-domains

2

1 3

4

Figure 5.31 Input Domain and Equivalence Classes

An equivalence class depicts valid or invalid states for the input condition. An input condition
can be either a specific numeric value, a range of values, a Boolean condition, or a set of
values. Generally, guidelines that are followed for generating the equivalence classes are
listed below:

• If an input condition is Boolean, then there will be two equivalence classes: one valid and
one invalid class.

• If input consists of a specific numeric value, then there will be three equivalence classes:
one valid and two invalid classes.

• If input consists of a range, then there will be three equivalence classes: one valid and
two invalid classes.

• If an input condition specifies a member of a set, then there will be one valid and one
invalid equivalence class.

To understand equivalence class partitioning properly, let us consider an example. This
example is explained in series of steps listed below:

1. Suppose that a program ‘P’ takes an integer ‘X’ as input.

2. Now for this input we have ‘X’ < 0 and ‘X’ > 0.

3. If ‘X’ < 0 then program is required to perform task T1 and if X > 0 then task T2 is
performed.

4. The input domain is as large as ‘X’ and it can assume a large number of values.
Therefore the input domain (P) is partitioned into two equivalence classes and all test
inputs in the X < 0 and X > 0 equivalence classes are considered to be equivalent.

5. Now, as shown in Figure 5.32 independent test cases are developed for X < 0 and
X > 0.

One Test case:
x = -3

Equivalence class
Another Test case:
x = 15

Equivalence class

X < 0

X > = 0

Figure 5.32 Test Case and Equivalence Class

(b) Boundary Value Analysis: Boundary value analysis (BVA) is a black box test design
technique where test cases are designed based on boundary values (that is, test cases are
designed at the edge of the class). Boundary value can be defined as an input value or
output value, which is at the edge of an equivalence partition or at the smallest incremental
distance on either side of an edge, for example the minimum or maximum value of a range.

Software Testing

Self-Instructional Material 191

NOTES

BVA is used since it has been observed that a large number of errors occur at the boundary
of the given input domain rather than at the middle of the input domain. Note that boundary
value analysis complements the equivalence partitioning method. The only difference is
that in BVA, test cases are derived for both input domain and output domain while in
equivalence partitioning, test cases are derived only for input domain.
Generally, the test cases are developed in boundary value analysis using certain guidelines,
which are listed below:

• If input consists of a range of certain values, then test cases should be able to exercise
both the values at the boundaries of the range and the values that are just above and
below boundary values. For example, for the range – 0.5 ≤ X ≤ 0.5, the input values for
a test case can be ‘– 0.4’, ‘– 0.5’, ‘0.5’, ‘0.6’.

• If an input condition specifies a number of values, then test cases are generated to
exercise the minimum and maximum numbers and values just above and below these
limits.

• If input consists of a list of numbers, then the test case should be able to exercise the
first and the last elements of the list.

• If input consists of certain data structures (like arrays), then the test case should be able
to execute all the values present at the boundaries of the data structures, such as the
maximum and minimum value of an array.

(c) Orthogonal Array Testing: Orthogonal array testing can be defined as a mathematical
technique that determines the variations of parameters that need to be tested. This testing is
performed when limited data is to be given as input. Orthogonal array testing is useful in
finding errors in the software where incorrect logic is applied. Orthogonal array testing
provides a way to select tests that:

• Guarantee testing of pair wise combination of all selected variables.

• Create an efficient way to test all combinations of variables using fewer test cases as
compared to other black box testing methods, such as boundary value analysis,
equivalence class partitioning, and cause effect graphing.

• Create test cases that have even distribution of all pair wise combinations of variables in
orthogonal array.

• Execute complex combinations of all the variables.

To understand orthogonal array testing, it is important to understand orthogonal arrays,
which are two-dimensional arrays of numbers. In these arrays, if any two columns are
chosen then the complete distribution of pair-wise combination of values present in the
array can be obtained. To perform orthogonal array testing, follow the steps listed below:

1. Find all the independent variables that need to be tested for interaction. This gives the
factors present in the array.

2. Decide the maximum number of values that each independent variable follows. This
gives the number of levels present in the array.

3. Find an orthogonal array that has minimum number of runs. An orthogonal array with
the minimum number of runs is one that has maximum factors and at least as many
levels as decided for each factor.

4. Map factors and values on to the array.

5. Choose values for ‘left over’ levels, that is, the levels for which there in no value
mapped in the array.

6. Convert runs into test cases.

Software Engineering

192 Self-Instructional Material

NOTES

In the above steps, runs refer to the number of rows in the array. This directly translates
into the number of test cases that will be generated by the orthogonal analysis testing
technique. Factors refer to the number of columns in an array. This directly translates to
the maximum number of variables that can be handled by this array. Levels refer to the
maximum number of values that can be taken on by any single factor.

To understand orthogonal array testing properly, let us consider an example of a web page.
This web page consists of three sections, namely, top, middle, and bottom, these sections
can be individually shown or hidden from the users. According to the procedure of orthogonal
array testing, the interactions among different sections can be tested as follows:

• Factors = 3, as there are three sections in the web page.

• Levels = 2, as variables can have either hidden or visible state.

• Draw orthogonal array = 23, as there are two levels and three factors.

Table 5.10 Orthogonal Array

Orthogonal array before mapping factors

Factor 1 Factor 2 Factor 3

Run 1 0 0 0

Run 2 0 1 1

Run 3 1 0 1

Run 4 1 1 0

Orthogonal array after mapping factors

Test 1 Hidden Hidden Hidden

Test 2 Hidden Visible Visible

Test 3 Visible Hidden Visible

Test 4 Visible Visible Hidden

The left over levels = 0. Now generate test cases from each run. Four test cases are
generated to check the conditions listed below:

• Home page is displayed and all other sections are hidden.

• Home page and all other sections rather than top section are displayed.

• Home page and all other sections rather than middle section are displayed.

• Home page and all other sections rather than bottom section are displayed.

(d) Cause-Effect Graphing: Cause-effect graphing is a test design technique where test
cases are designed using cause-effect graphs. A cause-effect graph is a graphical
representation of inputs and/or stimuli (causes) with their associated outputs (effects),
which can be used to design test cases. Test cases are generated to test all the possible
combinations of inputs provided to the program being tested.

One of the major drawbacks of using equivalence partitioning and boundary value analysis
is that both these methods test every input given to a program independently. This drawback
is avoided in cause effect graphing where combinations of inputs are used instead of
individual inputs. To use cause effect graphing method, a number of steps are followed,
which are listed below:

Software Testing

Self-Instructional Material 193

NOTES

1. List the cause (input conditions) and effects (outputs) of the program.

2. Create a cause-effect graph.

3. Convert graph into decision table.

4. Modify decision table rules to test cases.

For generating test cases, initially, all causes and effects are allocated unique numbers,
which are used to identify them. After allocating numbers, the cause due to which a particular
effect occurred is determined. Next, the combinations of various conditions that make the
effect ‘true’ are recognised. A condition has two states, ‘true’ and ‘false’. A condition is
‘true’ if it causes the effect to occur, otherwise it is ‘false’. The conditions are combined
using Boolean operators, such as ‘AND’ (&), ‘OR’ (|) and ‘NOT’ (~). Finally, a test case
is generated for all possible combinations of conditions.

The various symbols used in cause-effect graph are shown in Figure 5.33. The left side in
the figure depicts the various logical associations among causes ci and effects ei and the
dashed notation in the right side indicates the various constraint associations that can be
applied to either causes or effects.

Logical

Identity

not Exclusive

or

and Require Masks

Inclusive

Only one

Constraints

c1

e1

e1

c1

c1

c1

c1

e1

c1

e1

E

a

b

a

b

c

a

b

R

a

b

M

a

b

I O

Figure 5.33 Logical and Constraints Associations

To understand cause-effect graphing properly, let us consider an example. Suppose a triangle
is drawn with inputs (x, y, z). The values of these inputs are given between ‘0’ and ‘100’.
Using these inputs, three outputs are produced, namely, isosceles triangle, equilateral triangle
or no triangle is made (if values of x, y, z are less than 60º).

1. Using the steps of cause-effect graphing, initially the causes and effects of the problem
are recognised, which are listed in Table 5.11.

Table 5.11 Causes and Effects

Cause Effect

C1: side x is less than the sum of sides y and z. E1: no triangle is formed.

C2: sides x, y, z are equal. E2: equilateral triangle is formed.

C3: side x is equal to side y. E3: isosceles triangle is formed.

C4: side y is equal to side z.

C5: side x is equal to side z.

Software Engineering

194 Self-Instructional Material

NOTES

2. The cause effect graph is generated as shown in Figure 5.34.

NOT

AND

OR

E3

E2

E1

C1

C2

C3

C4

C5

Figure 5.34 Cause-Effect Graph

3. A decision table (A table that shows a set of conditions and the actions resulting from
them) is drawn as shown in Table 5.12.

Table 5.12 Decision Table

Conditions

C1: x < y + z 0 X X X X

C2: x = y = z X 1 X X X

C3: x = y X X 1 X X

C4: y = z X X X 1 X

C5: x = z X X X X 1

E1: not a triangle 1

E2: equilateral triangle 1

E3: isosceles triangle 1 1 1

4. Each combination of conditions for an effect in Table 5.12 is a test case.

5.6.3 Difference between White Box and Black Box Testing
Although white box testing and black box testing are used together for testing many programs,
there are several considerations that make them different from each other. Black box testing
detects errors of omission, which are errors occurring due to non-accomplishment of user
requirements. On the other hand, white box testing detects errors of commission which are
errors occurring due to non-implementation of some part of software code. The other
differences between white box testing and black box testing are listed in Table 5.13.

Software Testing

Self-Instructional Material 195

NOTES

Table 5.13 Difference between White Box and Black Box Testing

Basis White Box Testing Black Box Testing

Purpose � It is used to test the internal structure
of software.

� It is concerned only with testing
software and does not guarantee the
complete implementation of all the
specifications mentioned in user
requirements.

� It addresses flow and control structure
of a program.

Stage � It is performed in the early stages of
testing.

Requirement � Knowledge of the internal structure of
a program is required for generating test
case.

Test Cases � Here test cases are generated based on
the actual code of the module to be
tested. tjtjejjej jetjejt ejtjwejt ewktjekltj
tejt lek

Example � The inner software present inside the
calculator (which is known by the
developer only) is checked by giving
inputs to the code. the kthet ; thethj
klthe kl

5.6.4 Gray Box Testing
Gray box testing does not require full knowledge of the internals of the software that is to
be tested instead it is a test strategy, which is based partly on the internals. This testing
technique is often defined as a mixture of black box testing and white box testing techniques.
Gray box testing is especially used in web applications, because these applications are built
around loosely integrated components that connect through relatively well-defined interfaces.

Testing in this methodology is done from the outside of the software similar to black box
testing. However, testing choices are developed through the knowledge of how the underlying
components operate and interact. Some points noted in gray box testing are listed below:

• Gray box testing is platform and language independent.

• The current implementation of gray box testing is heavily dependent on the use of a host
platform debugger(s) to execute and validate the software under test.

• Gray box testing can be applied in real-time systems.

• Gray box testing utilises automated software-testing tools to facilitate the generation of
test cases.

• Module drivers and stubs are created by automation means thus, saving time of testers.

5.7 OBJECT-ORIENTED TESTING

The shift from traditional to object-oriented environment involves looking at and reconsidering
old strategies and methods for testing software. The traditional programming consists of
procedures operating on data, while the object-oriented paradigm focuses on objects that

� It is used to test the functionality
of software.

� It is concerned only with testing
specifications and does not
guarantee that all the components
of software that are implemented
are tested.

� It addresses validity, behaviour
and performance of software.

� It is performed in the later stages
of testing.

� No knowledge of the internal
structure of a program is required
to generate test case.

� Here the internal structure of
modules or programs is not
considered for selecting test cases.

� In this testing, it is checked
whether the calculator is working
properly or not by giving inputs
by pressing the buttons in the
calculator.

Check Your Progress

14. Define white box testing.
15. How is basis path testing

different from control
structure testing?

16. When is black box testing
useful?

17. Differentiate between
various methods used in
black box testing.

Software Engineering

196 Self-Instructional Material

NOTES

are instances of classes. The object-oriented (OO) paradigm provides a better understanding
of requirements in terms of identifying and specifying the objects, their behaviours, the
services provided by objects, object interactions, and their constraints. It is observed that
the OO paradigm significantly increases software reusability, extendibility, interoperability,
and reliability.

With the adoption of object-oriented paradigm, the various life cycle activities also have
acquired new perspectives. For example, waterfall methodology has been replaced by
iterative-incremental approach. This has been done to meet tighter delivery schedules and
dynamically changing requirements. Similarly requirement analysis not only identifies the
functional specifications, but also the business model, actors, objects, and interactions
between them. Analysis and design has changed from making a low level pseudo-code to
creating class and state-chart diagrams.

Testing too has undergone a major transformation in its approach, environments and tools.
OO software testing deals with new problems introduced by the powerful new features of
OO languages. These features (such as encapsulation, inheritance, polymorphism, and
dynamic binding) provide visible benefits in software designing and programming. Object-
oriented testing can be used in number of ways, which are listed below:

• Testing object-oriented software.

• Using object-oriented tools to test object-oriented as well as non object-oriented software.

• Using object-oriented techniques to test object-oriented software.

Object-oriented programs can be tested at four levels the algorithmic level, class level,
cluster level, and system level. At the algorithmic level, individual methods are tested in
isolation. Here conventional testing techniques can be applied without much change. At the
class level, the objective is to verify the integrity of a class by testing it as an individual
entity. The cluster level is concerned about the integration of classes. The focus is on the
synchronisation of different concurrent components as well as interclass method invocations.
At the system level, interactions among clusters are tested.

5.7.1 Testing of Classes
It is now accepted that class forms the basic unit of testing in object-oriented programs.
Class testing in OO software is driven by the operations encapsulated by the class and the
state behaviour of the class. This is unlike unit testing done in conventional software,
which focuses on the algorithmic detail of the module.

• Testing individual classes: Programmers who are involved in the development of the
class conduct testing at the object level. Test cases for individual objects can be drawn
from requirements specifications, models, and the language used. In addition, structural
testing methods, such as boundary analysis are extensively used.

• Testing groups of classes: The next unit is aggregation of classes (also referred to as
cluster) or a small subsystem. A cluster/component is a set of classes, which are related
to each other through association, aggregation or dependency. The methods of a class
are tested in isolation, and then in parallel with other collaborating classes. This can be
viewed as integration testing among the classes. System testing is initiated when all
cluster/component tests are completed.

Usually there is a misconception that if individual classes are well designed and have proved
to work in isolation, then there is no need to test the interactions between two or more
classes when they are integrated. However, this is not true because sometimes there can be
errors, which can be detected only through integration of classes. Also, it is possible that if
a class does not contain a bug, it may still be used in a wrong way by another class, leading
to system failure.

Software Testing

Self-Instructional Material 197

NOTES

5.7.2 Developing Test Cases in Object-Oriented Testing
Test case design in object-oriented testing is based on the conventional methods, however,
these test cases should encompass special features so that they can be used in the object-
oriented environment. The points that should be noted while developing test cases in object-
oriented environment are listed below:

• Each test case should be uniquely identified and explicitly associated with the class to be
tested.

• The purpose of the test should be stated clearly.
• A list of testing steps should be developed for each test and should contain the following:
� A list of specified states for the object that is to be tested.
� A list of messages and operations, which will be exercised as a consequence of the

test.

� A list of exceptions, which may occur as the object is tested.

� A list of external conditions (changes in the environment external to the software)
that must exist in order to properly conduct the test.

� Supplementary information that aids in understanding or implementing the test.

5.7.3 Object-Oriented Testing Methods
Currently, most software development organisations are still in the process of observing
and/or switching over to the OO paradigm. It is anticipated that OO software testing will
receive much attention in the software development process as the importance of this
paradigm increases. The methods used for performing object-oriented testing include state-
based testing, fault-based testing, scenario-based testing, and Unified modelling
language-based testing.

Fault-based
Testing

Scenario-
based Testing

Object-oriented
Testing Methods

State-based
Testing

UML-based
Testing

Figure 5.35 Object-Oriented Testing Methods

(a) State-based Testing : State-based testing is used to verify whether the methods (a
procedure that is executed by an object) of a class are interacting properly with each other
or not. This testing seeks to exercise the transitions among the states based upon the
identified inputs. For this, finite-state machine (FSM) or state-transition diagram is constructed
to represent the change of states that occur in the program under test.

For testing the methods, state-based testing generates test cases, which check whether the
method is able to change the state of object as expected or not. If any method of the class

Software Engineering

198 Self-Instructional Material

NOTES

is not able to change the state of object as expected, then the method is said to contain
errors.

To perform state-based testing, a number of steps are followed, which are listed below:

1. Derive a new class from an existing class with some additional features, which are
used to examine and set the state of the object.

2. Next, test driver is written. This test driver contains a main program to create an
object, send messages to set the state of object, send messages to invoke methods
of the class that is being tested and send messages to check the final state of the
object.

3. Finally, stubs are written. These stubs call the untested methods.

(b) Fault-based Testing: In fault-based testing, test cases are developed to determine a set
of plausible faults. Here, the focus is on falsification. In this testing, tester does not focus
on a particular coverage of a program or its specification, but on concrete faults that
should be detected. The focus on possible faults enables testers to incorporate their expertise
in both the application domain and the particular system under test. Since testing can only
prove the existence of errors and not their absence, this testing approach is considered to
be an effective testing method and is hence often used when security or safety of a system
is to be tested.

Fault-based testing starts by examining the analysis and design model of object-oriented
software. These models provide an overview of the problems that can occur during
implementation of software. The faults occur in both operation calls and various types of
messages (like a message sent to invoke an object). These faults are unexpected outputs,
incorrect messages or operations, and incorrect invocation. The faults can be recognised
by determining the behaviour of all operations performed to invoke the methods of a class.

(c) Scenario-based Testing: Scenario-based testing is used to detect errors that are caused
due to incorrect specifications and improper interactions among various segments of the
software. Incorrect interactions often lead to incorrect outputs that can cause malfunctioning
of some segments of software. The use of scenarios in testing is a common way of
describing how a representative user might execute a task or achieve a goal within a specific
context or environment. Note that these scenarios are more context and user specific
instead of being product specific. Generally, the structure of a scenario includes the following:

• A condition under which the scenario runs.

• A goal to achieve, which can also be a name of the scenario.

• A set of steps of actions.

• An end condition at which the goal is achieved.

• A possible set of extensions written as scenario fragments.

 Scenario-based testing combines all the classes that support a use case (scenarios are
subset of use cases) and executes a test case to test them. Execution of all the test cases
ensures that all methods in all the classes are executed at least once during testing. However,
it is difficult to test all the objects (present in the classes combined together) collectively.
Thus, rather than testing all objects collectively, they are tested using either top-down or
bottom-up integration approach.

This testing is considered to be the most effective method as in this method, scenarios can
be organised in such a manner that the most likely scenarios are tested first with unusual or
exceptional scenarios considered later in the testing process. This satisfies a fundamental
principle of testing that most testing effort should be devoted to those paths of the system
that are mostly used.

Software Testing

Self-Instructional Material 199

NOTES

Note: A use case collects all the scenarios together, specifying the manner in which the
goal can succeed or fail.

(d) Unified Modelling Language-based Testing: Unified modelling language (UML) is a
semi-formal modelling language that is commonly used in object-oriented software
development. It includes class diagrams, activity diagrams, sequence diagrams, collaboration
diagrams, and state diagrams. Class diagrams describe general relationships amongst classes.
Activity, sequence, collaboration, and state diagrams describe the interaction of objects at
different levels of abstraction. For example, activity diagrams may illustrate a use case
from the users’ point of view while sequence diagrams express interactions among objects
in greater detail.

UML techniques have been proposed to test object-oriented systems based on UML
specifications. In UML-based technique, following points are noted:

• The main test plan consists of use case sequences.

• Each use case is associated with a sequence diagram. The diagram is translated formally
into a regular expression.

• Every term in regular expression represents either a use case scenario or a set of scenarios
in the presence of iteration symbols. A guard condition expressed in an object constraint
language is associated with each path in the sequence diagram.

• The exact operation sequences to be executed for each term, including inter-dependencies,
are also identified.

• The testing ‘oracles’ are specified in terms of the post-conditions of the sequences of
operations, specified also in the object constraint language.

5.8 LET US SUMMARIZE

1. Through effective software testing, the software can be examined for correctness,
comprehensiveness, consistency, and adherence to standards. This helps in delivering
high quality software product, lowering of maintenance costs, and leads to more
contented users. Software testing is often used in association with the terms verification
and validation.

2. Verification refers to checking or testing of items, including software, for conformance
and consistency with an associated specification. Validation refers to the process of
checking that the developed software is according to the requirements specified by the
user.

3. The main reasons due to which errors occur in the software are unclear requirements,
software complexity, programming errors, changing requirements, time pressure, and
poorly documented code.

4. Testing is performed either by software developers or by independent test group.

5. The ease with which a program is tested is known as testability. Testability can be
defined as the degree to which a program facilitates the establishment of test criteria
and execution of tests to determine whether the criteria have been met or not.

6. Test plan is a document, which is developed to specify the objectives, scope, method,
and purpose of software testing. A complete test plan helps people outside the test
group to understand the ‘why’ and ‘how’ of product validation. While an incomplete
test plan can result in a failure to check how the software works on different hardware
and operating systems or when software is used with other software.

Check Your Progress
18. Object-oriented programs

can be tested at four
levels. Explain all the
levels.

19. List the points that should
be noted while developing
test cases in object-
oriented environment.

20. Define the methods used
for performing object-
oriented testing.

Software Engineering

200 Self-Instructional Material

NOTES

7. Test case is defined as a set of input values, execution preconditions, expected results,
and execution post conditions developed for a particular objective or test condition,
such as to exercise a particular program path or to verify compliance with a specific
requirement.

8. There are four levels of testing unit testing, integration testing, system testing, and
acceptance testing. The lowest level of testing is unit testing, which is used to test the
individual units of software.

9. The various tests that are performed as a part of unit testing are module interface, local
data structure, boundary conditions, all independent paths, and error handling paths.

10. After unit testing, integration testing is performed to ensure that all the modules continue
to work in accordance with customer requirements even after integration.

11. Various approaches used to perform incremental integration testing are top-down
integration testing, bottom-up integration testing, regression testing, and smoke testing.

12. During top-down integration testing, software is developed and tested by integrating
the individual modules, moving downwards in the control hierarchy.

13. Bottom-up integration testing combines and tests modules present at the lower levels
proceeding towards the modules present at higher levels of control hierarchy.

14. Regression testing is used to re-test the software or part of it to ensure that no previously
working components, functions, or features fail as a result of error correction and due
to integration of modules.

15. Smoke testing ensures that the most crucial functions of a program work correctly.

16. Software is integrated with other elements, such as hardware, people, and database to
form a computer-based system. This system is then checked for errors using system
testing. Various kinds of system testing are recovery testing, security testing, stress
testing, and performance testing.

17. Recovery testing is a system test, which forces system to fail in different ways and
verifies that the software recovers from expected or unexpected events without loss
of data or functionality.

18. Systems with sensitive information are generally the target for improper or illegal use.
Therefore, protection mechanisms are required to restrict unauthorised access to the
system. To avoid any improper usage, security testing is performed, which identifies
and removes software flaws that may potentially lead to security violations.

19. Stress testing is designed to test the software with abnormal situations. These abnormal
situations arise when resources are required in abnormal quantity, frequency, or volume.

20. Performance testing checks the run-time performance of the software (especially real-
time and embedded systems) in the context of the entire computer based system. This
testing is used to verify the load, volume, and response times as defined by requirements.

21. Validation testing/acceptance testing is performed to determine whether software meets
all the functional, behavioural, and performance requirements or not. During acceptance
testing, software is tested and evaluated by a group of users either at the developer’s
site or user’s site. This enables the users to test the software themselves and analyse
whether it is meeting their requirements or not.

22. Alpha testing is conducted by the users at the developer’s site. On completion of alpha
testing, users report the errors to software developers so that they can correct them.

23. Beta testing assesses performance of software at user’s site. This testing is ‘live’
testing and is conducted in an environment, which is not controlled by the developer.

Software Testing

Self-Instructional Material 201

NOTES

24. Once the software is developed it should be tested in a proper manner before the
system is delivered to the user. For this white box testing and black box testing technique
are used.

25. White box testing, also known as structural testing, is performed to check the internal
structure of a program. To perform white box testing, tester should have a thorough
knowledge of the program code and the purpose for which it is developed. Various
types of white box testing are basis path testing, control structure testing, and mutation
testing.

26. Basis path testing enables the software tester to generate test cases in order to develop
a logical complexity measure of a component-based design (procedural design). This
measure is used to specify the basis set of execution paths.

27. Set of all the independent paths within the program is known as basis set.

28. Control structure testing is used to enhance the coverage area by testing various control
structures (which include logical structures and loops) present in the program. The
various types of testing performed under control structure testing are condition testing,
data flow testing, and loop testing.

29. Condition testing is a test case design method, which ensures that the logical conditions
and decision statements are free from errors.

30. Data flow testing is a test design technique in which test cases are designed to execute
definition and uses of variables in the program. This testing ensures that all variables
are used properly in a program.

31. Loop testing is used to test simple loops, nested loops, concatenated loops, and
unstructured loops.

32. Mutation testing is a white box method where errors are ‘purposely’ inserted into a
program (under test) to verify that whether the existing test case is able to detect the
error or not. In this testing, mutants of the program are created by making some
changes in the original program.

33. Black box testing, also known as functional testing, checks the functional requirements
and examines the input and output data of these requirements. The functionality is
determined by observing the outputs to corresponding inputs. The various methods
used in black box testing are equivalence class partitioning, boundary value analysis,
orthogonal array testing, and cause effect graphing.

34. In equivalence class partitioning, the test inputs are classified into equivalence classes
such that one input checks all the input values in that class. This method tests the
validity of outputs by dividing the input domain into different classes of data (known as
equivalence classes) using which test cases can be easily generated. Test cases are
designed with the purpose of covering each partition at least once.

35. In boundary value analysis, the boundary values of the equivalence classes are considered
and tested. BVA is used since it has been observed that a large number of errors occur
at the boundary of the given input domain rather than at the middle of the input domain.

36. Orthogonal array testing can be defined as a mathematical technique that determines
the variations of parameters that need to be tested. This testing is performed when
limited data is to be given as input. Orthogonal array testing is useful in finding errors
in the software where incorrect logic is applied.

37. Cause-effect graphing is a test design technique where test cases are designed using
cause-effect graphs. A cause-effect graph is a graphical representation of inputs and/
or stimuli (causes) with their associated outputs (effects), which can be used to design
test cases.

Software Engineering

202 Self-Instructional Material

NOTES

38. Gray box testing does not require full knowledge of the internals of the software that is
to be tested, instead it is a test strategy, which is based partly on the internals. This
testing technique is often defined as a mixture of black box testing and white box
testing techniques.

39. Object-oriented software testing deals with new problems introduced by the powerful
new features of OO languages. These features (such as encapsulation, inheritance,
polymorphism, and dynamic binding) provide visible benefits in software designing
and programming. The various methods to perform object-oriented testing are state-
based testing, fault-based testing, scenario-based testing, and UML-based testing.

5.9 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Verification refers to checking or testing of items, including software, for
conformance and consistency with an associated specification. For verification,
techniques like reviews, analysis, inspections and walkthroughs are commonly used.
While validation refers to the process of checking that the developed software is
according the requirements specified by the user.

2. Bug is defined as a logical mistake, which is caused by a software developer while
writing the software code. Error is defined as the difference between the outputs
produced by the software and the output desired by the user (expected output).
Fault is defined as the condition that leads to malfunctioning of the software.
Malfunctioning of software is caused due to several reasons, such as change in the
design, architecture, or software code. Defect that causes error in operation or negative
impact is called failure. Failure is defined as the state in which software is unable to
perform a function according to user requirements. Bugs, errors, faults, and failures
prevent software from performing efficiently and hence, cause the software to produce
unexpected outputs.

3. Independent test group (ITG) is responsible to detect errors that may have been
neglected by the software developers. ITG tests the software without any
discrimination since the group is not directly involved in the development process.
However, the testing group does not completely take over the testing process, instead
it works with the software developers in the software project to ensure that testing is
performed in an efficient manner.

4. A test plan describes how testing would be accomplished. A test plan is defined as a
document that describes the objectives, scope, method, and purpose of software
testing. This plan identifies test items, features to be tested, testing tasks and the
persons involved in performing these tasks.

5. The various components of the test plan are listed below:

Component Purpose

Responsibilities Assigns responsibilities and keeps people on track and focused.

Assumptions Avoids misunderstandings about schedules.

Test Outlines the entire process and maps specific tests. The testing scope,
schedule, and duration are also outlined.

Communication Communication plan (who, what, when, how about the people) is developed.

Risk Analysis Identifies areas that are critical for success.

Defect Reporting Specifies how to document a defect so that it can be reproduced, fixed, and
retested.

Environment Specifies the technical environment, data, work area, and interfaces used in
testing. This reduces or eliminates misunderstandings and sources of potential
delay.

Software Testing

Self-Instructional Material 203

NOTES

6. A test case is a document that describes an input, action, or event and its expected
result, in order to determine whether the software or a part of the software is working
correctly or not.

7. Incomplete and incorrect test cases lead to incorrect and erroneous test outputs. To
avoid this, a test case should be developed in such a manner that it checks software
with all possible inputs. This process is known as exhaustive testing and the test
case, which is able to perform exhaustive testing, is known as ideal test case.

8. The test plan is not concerned with the details of testing a unit. Moreover, it does not
specify the test cases to be used for testing units. Thus, test case specification is
done in order to test each unit separately. Depending on the testing method specified
in test plan, features of unit that need to be tested are ascertained.

9. Unit testing is performed to test the individual units of software. Since software is
made of a number of units/modules, detecting errors in these units is simple and
consumes less time, as they are small in size.

10. Top-down integration testing: In this testing, software is developed and tested by
integrating the individual modules, moving downwards in the control hierarchy. In
top-down integration testing, initially only one module known as the main control
module is tested. After this, all the modules called by it are combined with it and
tested. This process continues till all the modules in the software are integrated and
tested.
Bottom-up integration testing: In this testing, individual modules are integrated
starting from the bottom and then moving upwards in the hierarchy. That is, bottom-
up integration testing combines and tests the modules present at the lower levels
proceeding towards the modules present at higher levels of control hierarchy.

11. To understand the overall procedure of software integration, a document known as
test specification is prepared. This document provides information in the form of test
plan, a test procedure, and actual test results.

12. System testing can be defined as a testing conducted on a complete, integrated system
to evaluate the system’s compliance with its specified requirements. The various
types of system testing are defined below:

• Recovery testing: Recovery testing is a system test, which forces the system to
fail in different ways and verifies that the software recovers from expected or
unexpected events without loss of data or functionality.

• Security testing: To avoid any improper usage, security testing is performed
which identifies and removes software flaws that may potentially lead to security
violations.

• Stress testing: Stress testing is designed to test the software with abnormal
situations. These abnormal situations arise when resources are required in abnormal
quantity, frequency, or volume.

• Performance testing: Performance testing checks the run-time performance of
the software (especially real-time and embedded systems) in the context of the
entire computer based system. This testing is used to verify the load, volume, and
response times as defined by requirements.

13. Validation testing is performed to determine whether software meets all the functional,
behavioural, and performance requirements or not. The various types of validation
testing defined below:

• Alpha testing: Alpha testing is conducted by the users at the developer’s site. In
other words, this testing assesses the performance of software in the environment
in which it is developed.

Software Engineering

204 Self-Instructional Material

NOTES

• Beta testing: Beta testing assesses performance of software at user’s site. This
testing is ‘live’ testing and is conducted in an environment, which is not controlled
by the developer. That is, this testing is performed without any interference from
the developer.

14. White box testing is performed to check the internal structure of a program. To
perform white box testing, tester should have a thorough knowledge of the program
code and the purpose for which it is developed.

15. Basis path testing enables the software tester to generate test cases in order to develop
a logical complexity measure of a component-based design (procedural design). While,
control structure testing is used to enhance the coverage area by testing various
control structures (which include logical structures and loops) present in the program.
Note that basis path testing is used as one of the techniques for control structure
testing.

16. The black box testing is used to find errors listed below:

• Interface errors, such as functions, which are unable to send or receive data to/
from other software.

• Incorrect functions that lead to undesired output when executed.
• Missing functions and erroneous data structures.
• Erroneous databases, which lead to incorrect outputs when software uses the data

present in these databases for processing.
• Incorrect conditions due to which the functions produce incorrect outputs when

they are executed.
• Termination errors, such as certain conditions due to which function enters a loop

that forces it to execute indefinitely.

17. The various methods of black box testing are equivalence class partitioning, boundary
value analysis, orthogonal array testing, and cause-effect graphing. In equivalence
class partitioning the test inputs are classified into equivalence classes such that one
input checks (validates) all the input values in that class. In boundary value analysis
the boundary values of the equivalence classes are considered and tested. In orthogonal
array testing faults in the logic of the software component are considered and
tested. In cause-effect graphing, cause-effect graphs are used to design test cases,
which provides all the possible combinations of inputs to the program.

18. Object-oriented programs can be tested at four levels the algorithmic level, class
level, cluster level, and system level. At the algorithmic level, individual methods are
tested in isolation. Here conventional testing techniques can be applied without much
change. At the class level, the objective is to verify the integrity of a class by testing
it as an individual entity. The cluster level is concerned about the integration of
classes. The focus is on the synchronisation of different concurrent components as
well as interclass method invocations. At the system level, interactions among clusters
are tested.

19. • Each test case should be uniquely identified and explicitly associated with the class
to be tested.

• The purpose of the test should be stated clearly.
• A list of testing steps should be developed for each test and should contain the

following:

� A list of specified states for the object that is to be tested.
� A list of messages and operations, which will be exercised as a consequence of

the test.

Software Testing

Self-Instructional Material 205

NOTES

� A list of exceptions, which may occur as the object is tested.
� A list of external conditions (changes in the environment external to the software)

that must exist in order to properly conduct the test.
� Supplementary information that aids in understanding or implementing the test.

20. The methods used for performing object-oriented testing include state-based testing,
fault-based testing, scenario-based testing, and unified modelling-based testing.

• State-based testing: State-based testing is used to verify whether the methods (a
procedure that is executed by an object) of a class are interacting properly with
each other or not. This testing seeks to exercise the transitions among the states
based upon the identified inputs.

• Fault-based testing: In fault-based testing, test cases are developed to determine
a set of plausible faults. Here, the focus is on falsification. In this testing, tester
does not focus on a particular coverage of a program or its specification, but on
concrete faults that should be detected.

• Scenario-based testing: Scenario-based testing is used to detect errors that are
caused due to incorrect specifications and improper interactions among various
segments of the software.

• Unified modelling language-based testing: Unified modelling language (UML)
is a semi-formal modelling language that is commonly used in object-oriented
software development. It includes class diagrams, activity diagrams, sequence
diagrams, collaboration diagrams, and state diagrams.

5.10 QUESTIONS AND EXERCISES

I. Fill in the Blanks

1. The purpose of software testing is to find bugs, _________, _________, and _________
in the software.

2. A document that describes the objectives, scope, method, and purpose of software
testing is known as _________.

3. Two methods that enable users to test the software are _________ and _________.

4. _________ testing is used to check the internal structure of the program.

II. Multiple Choice Questions

1. Which of the following is a type of software testing strategy?

(a) Model based (b) Process oriented (c) Dynamic (d) All

2. _________ is defined as the difference between the outputs produced by the software
and the output desired by the user (expected output).
(a) Error (b) Failure (c) Faults (d) None of these

3. Which of the following is a type of control structure testing?
(a) Loop testing (b) Data flow testing
(c) Both (a) and (b) (d) None

4. _________ is an object-oriented testing method.
(a) Scenario-based testing (b) Acceptance testing
(c) Test plan (d) All

Software Engineering

206 Self-Instructional Material

NOTES

III. State Whether True or False

1. Software testing activities need not be planned before testing commences.
2. While performing testing, there is no need to include test cases for invalid and unexpected

conditions.
3. Testability is the ease with which the program is tested.
4. Set of all independent paths present in the program is known as basis set.

IV. Descriptive Questions

1. Can software execute properly if it is not tested? Explain.
2. Explain the guidelines that are followed to make testing effective and efficient.
3. Describe unit testing along with the procedure of performing it.
4. Is it beneficial to allow users to test the software before finally accepting it? If yes,

why and explain the testing through which the user test the software.
5. What is white box testing and black box testing? Explain the differences between

them.
6. What is the difference between equivalence class partitioning and boundary value

analysis?
7. Write a short note on

(a) Basis path testing (b) Control structure testing (c) Mutation testing

5.11 FURTHER READING

1. Software Engineering – A Practitioner’s Approach– Roger Pressman
2. An Integrated Approach to Software Engineering– Pankaj Jalote
3. Software Engineering – Ian Sommerville

PUNJAB TECHNICAL UNIVERSITY
LADOWALI ROAD, JALANDHAR

INTERNAL ASSIGNMENT

TOTAL MARKS: 25

NOTE: Attempt any 5 questions
 All questions carry 5 Marks.

Q. 1. What are the different categories software can be classified into?
Q. 2. Explain the waterfall process model.

Q. 3. Explain the following components of software cost estimation:
 (a) problem-based estimation; (b) process-based estimation
Q. 4. Explain the project planning process.
Q. 5. What is the difference between structured analysis and object-oriented analysis? Describe

the concepts used in both of them.
Q. 6. Write short notes on the following:
 (a) SADT (b) Data dictionary
 (c) Technical feasibility (d) Functional requirements
Q. 7. Enumerate the various sections of Software Design Documentation (SDD).
Q. 8. Outline the User Interface Design Process.
Q. 9. What are the essential principles to be followed for software testing?
Q.10. Briefly state the advantages and disadvantages of Acceptance Testing.

PUNJAB TECHNICAL UNIVERSITY
LADOWALI ROAD, JALANDHAR

ASSIGNMENT SHEET

(To be attached with each Assignment)
__

Full Name of Student:___
 (First Name) (Last Name)

Registration Number:

Course:__________ Sem.:________ Subject of Assignment:________________________________

Date of Submission of Assignment:

 (Question Response Record-To be completed by student)

 Total Marks:_____________/25

Remarks by Evaluator:__

 __

Note: Please ensure that your Correct Registration Number is mentioned on the Assignment Sheet.

 Name of the Evaluator

Signature of the Student Signature of the Evaluator

Date:_______________ Date:_______________

S.No. Question Number
Responded

Pages ____ - ____ of
Assignment

Marks

1
2
3
4
5
6
7
8
9

10

	Introduction.pdf
	Unit-1.pdf
	Unit-2.pdf
	Unit-3.pdf
	Unit-4.pdf
	Unit-5.pdf

